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Executive Summary

Introduction/Purpose of Report

Alceon Corporation has prepared this risk assessment to estimate Risk-Based
Cleanup Goals (RBCGs) for soils at residences near the 2800 S. Sacramento site in
Chicago, lllinois. The Celotex Corporation, AlliedSignal, and the US Environmental
Protection Agency Region V (US EPA) have had several discussions about draft risk
assessments previously performed for this site. Although Celotex, AlliedSignal and US
EPA have agreed on some exposure assumptions, they differ on others. Therefore, the
purpose of this report is fourfold:

1. To develop RBCGs for benzo(a)pyrene equivalents (BaPeq) deterministically using
exposure assumptions proposed by Celotex and AlliedSignal.

2. To develop RBCGs for BaPeq as a distribution, using probabilistic methods.

3. To present, side-by-side, the RBCGs proposed by Celotex, AlliedSignal, and the
US EPA Region V to facilitate understanding of the differences.

4. To present the outline of a health-protective, resource-efficient method for selecting
residential properties for remediation should the need be demonstrated in the risk
assessment.

Site Location and Description

The 2800 S. Sacramento site is located at 2800 South Sacramento Avenue in
Chicago, lllinois. The site, including the 18-acre Celotex property and a 6-acre
property to the south (which is currently being used for truck storage), is located in a
mixed industrial, commercial, and residential area. Industrial-buildings on the Celotex
property were demolished and removed in 1993, except for some concrete slabs and
foundation remnants, and a soil cover was then placed on the property. The entire site
is surrounded by a chain-link fence.

Site History

Before 1912, the area was a farmstead. Allied Chemical Corporation operated a coal
tar distillation and roofing plant at the facility beginning in 1912. The facility was sold to
The Celotex Corporation through several transactions between 1967 and 1979.

Regulatory Background

The lllinois Environmental Protection Agency (IEPA) conducted various investigations
at the 2800 S. Sacramento site from 1989 to 1993. In 1993, a US EPA Technical
Assistance Team assessed the area, and in 1994, the US EPA issued a Special
Notice of Liability and proposed Consent Order to Celotex and AlliedSignal. The
proposed Consent Order required Celotex and AlliedSignal to perform sampling in
residential areas in the vicinity of the site, prepare an Engineering Evaluation/ Cost
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Analysis (EE/CA), and perform remediation as appropriate. AlliedSignal and Celotex
signed an informal agreement with the US EPA in July 1995 under which the
companies performed an investigation of contamination on residential properties
within the study area, which was defined as the homes within a 2,500-ft radius from the
site.

Chemicals of Concern

The carcinogenic polycyclic aromatic hydrocarbons (PAHs) selected as the study
chemicals are expressed as BaPeq; these chemicals were selected because they
dominate the calculations of RBCGs. PAHs generally adsorb strongly to soils, migrate
slowly if at all in ground water, and do not readily volatilize into soil gas or the
atmosphere.

Methods Used in This Risk Assessment

~—

Vgt

Alceon has used both deterministic and probabilistic calculations to estimate RBCGs
for surface soils in the study area. The risk assessment is based on three pathways,
incidental soil ingestion, inhalation of fugitive dust, and dermal contact with soil. The
RBCG based on exposure assumptions proposed by Celotex and AlliedSignal for
Reasonable Maximum Exposure (RME) was calculated first using deterministic
methods. Then the RBCG as a distribution was calculated using probabilistic methods.
The last calculation was based on RME assumptions proposed by US EPA. The only
difference between the companies’ calculated RBCGs and the US EPA's is in their
respective exposure assumptions. All the calculations use the same toxic potencies
listed in the US EPA's Integrated Risk Information System (IRIS) database.

The two sets of deterministic exposure assumptions differ because the companies rely
primarily on the latest US EPA “Guidelines for Exposure Assessment” to develop RME
assumptions, using information appropriate for the study area; US EPA relies primarily
on earlier Agency guidance to develop default RME assumptions using “bounding
estimates.” Bounding estimates may be regarded as maximally conservative
estimates, which, given the compounding effect that occurs in the calculations, exceed
reasonable estimates of actual exposure, even for the most exposed individuals. The
assumptions used by the companies for both their deterministic and probabilistic risk
assessments are intended to reflect a reasonable, conservative estimate of risk.

As an example, the companies and US EPA agree that if the temperature is below
freezing no children will play outdoors and have exposure to the soil. However,
Celotex and AlliedSignal proposed that as the temperature rises, increasing
percentages of children should be assumed to have exposure. US EPA assumed that
if the temperature is above 32 degF, all children are exposed to the outdoor soil every
day.

RBCGs for Study Area

Using deterministic methods, Alceon estimated the RBCGs for surface soils at
residential houses near the 2800 S. Sacramento site as follows:
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Celotex and AlliedSignal’s exposure assumptions: 27.5 mg/kg BaPeq
US EPA's exposure assumptions: 1.93 mg/kg BaPeq

Using probabilistic methods, Alceon calculated a distribution of BaPeq concentrations
that represents the response goal, or cleanup target, for BaPeq concentration in soils.
The exposure assumptions on which the calculations are based are similar to those
used by Celotex and AlliedSignal for their deterministic risk assessment, this time
expressed as distributions. The health-protective distribution of response goals is
shown below:

Percentile Cleanup Goal Comment
minimum = 0 mg/kg BaPeq US EPA's 1.93 mg/kg cleanup goal lies near

extreme end of health protective distribution

10th < 6.4 mg/kg BaPeq
percentile

20th < 9.5 mg/kg BaPeq
percentile

30th < 12.8 mg/kg BaPeq
percentile

40th < 16.4 mg/kg BaPeq
percentile

50th < 20.8 mg/kg BaPeq
percentile

60th < 26.1 mg/kg BaPeq Companies’ 27.5 mg/kg goal is near mid-

percentile range.

70th < 33.3 mg/kg BaPeq
percentile
80th < 43.6 mg/kg BaPeq
percentile
90th < 58.2 mg/kg BaPeq
percentile
95th < 72.7 mg/kg BaPeq
percentile
maximum < 99.9 mg/kg BaPeq

Identifying Potential Candidates for Remediation

Implementation of response goals in a residential neighborhood presents practical
issues regarding health protection and feasibility. Part of the solution requires an
understanding that individuals do not have all their exposure on a single property, but
over many properties within their neighborhood, as described in US EPA guidance
documents. A resulting “exposure point concentration” (EPC) can be calculated using
spatial statistics based on activity-, time-, and distance-weighted factors.

The cleanup target distribution listed above provides the basis for a remediation

strategy that is health protective yet resource-efficient. The approach would work as
follows:
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1. Characterize through sampling and analysis the BaPeq concentrations at all the
residences in the study area. A sampling program may be possible that yields more
information than one in which every home is sampled, since measurements within
a property are subject to variability.

2. Using spatial statistics, estimate the distribution of EPCs.

3. Compare the distribution of EPCs based on measured concentrations to the
distribution for the RBCG. If any percentiles of the EPC distribution exceed the
corresponding percentile of the RBCG distribution, remediate the surface soils at
one or more of the most contaminated properties.

4. If the distribution of EPCs based on the remaining concentrations still does not
meet the distribution for the RBCG, remediate one or more of the more
contaminated properties that remain.

5. Continue remediation until the distribution of EPCs is smaller (i.e. has lower
percentiles) than the RBCG distribution.

This approach provides appropriate protection and minimizes neighborhood
disruption, which is also a concem in the development of a remedial plan.
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1. Introduction

This human health risk assessment uses both deterministic and probabilistic
calculations to estimate risk-based cleanup goals for surface soils at residential
properties near the industrial site in Chicago, IL. Alceon has completed this human
health risk assessment report in accordance with the most current quantitative human
health risk assessment methods of the US Environmental Protection Agency (US EPA,
1992, 1993, 1995; US EPA, 1994, MC; Browner, 1995; US EPA, 1995, TG).

The body of this report contains both deterministic and probabilistic calculations for
“risk-based cleanup goals" (RBCGs) for the concentration of total carcinogenic
polycyclic aromatic hydrocarbons (cPAHs) as benzo(a)pyrene (BaP) equivalents in
surface soils. First, we calculate the RBCG as a single concentration of BaPeq based
on deterministic "Reasonable Maximum Exposure" (RME) exposure assumptions
proposed by Celotex Corporation and AlliedSignal, Inc. These values follow the concept
of "High End Exposure" (HEE) exposure assumptions (US EPA, 1992, Exposure).
Second, we calculate the RBCG as a distribution of BaPeq based on distributions for
exposure assumptions taken from the refereed literature and/or as developed for this
project (US EPA, 1992, Exposure). Third, we calculate a single RBCG based on
deterministic default "Reasonable Maximum Exposure” (default RME) exposure
assumptions proposed by US EPA Region V (US EPA, 1989, HHEM; US EPA, 1991,
Default).

The three sets of calculations differ only in their exposure assumptions; all the
calculations use (i) the same toxic potencies listed US EPA's Integrated Risk
Information System (IRIS) database for benzo(a)pyrene (BaP) and (ji) the same (or
more stringent) policy on target risk as adopted by US EPA's contractor, Ecology &
Environment (E&E, 1995). While this report does not contain calculations using
exposure assumptions based on the concept of Central Tendency (CT) exposure, we
will provide them upon request.

The two sets of deterministic exposure assumptions in this report differ because Celotex
and AlliedSignal rely primarily on the latest Agency "Guidelines for Exposure
Assessment" published in the Federal Register (US EPA, 1992, Exposure) to develop
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RME assumptions as point values using information appropriate for the neighborhood in
Chicago. In contrast, Region V relies primarily on earlier Agency guidance in interim
final directives (especially, US EPA, 1991, Default; and US EPA, 1989, HHEM) to
develop default RME assumptions as point values using "bounding estimates." The
terms “hig'h end" and "bounding estimate" are defined in the Federal Register (US EPA,
1991, Exposure) and draw on recommendations and findings by the Agency's Science
Advisory Board (US EPA, 1992, SAB). In short, Celotex and AlliedSignal develop
assumptions that -- in combination -- are "a plausible estimate of the individual risk for
those persons at the upper end of the risk distribution” (US EPA, 1992, Exposure, p.
22921), while Region V develops assumptions that -- in combination -- create a
“bounding estimate" of risk.

Of course, none of the exposure variables in this report are truly point values; they are
really distributions expressing the range and probability of occurrence. Using full-
information methods, the probabilistic exposure assessment in this report shows how to
propagate the range and probability in the exposure variables using a powerful and
general mathematical tool called Monte Carlo simulation (Morgan & Henrion, 1990;
Fishman, 1996). First used by mathematicians and physicists 50 years ago, Monte
Carlo simulations are now used routinely in operations research, weapons design for
national defense, and troop deployment -- not to mention mathematics, physics,
chemistry, biology, oceanography, physiology, traffic engineering, bridge design, airport
operation, investment banking, insurance, and other disciplines -- to do calculations for
which deterministic methods give incorrect, partial, or misleading answers (Rubinstein,
1981; Morgan, 1984). The National Academy of Science (NAS), the National Council on
Radiation Protection (NCRP), the American Industrial Health Council (AIHC), US EPA's
Headquarters, and the Agency's Science Advisory Board have all endorsed Monte Carlo
methods as a valid and powerful way to propagate distributions through dose equations
and as a way to avoid excessively compounding conservatisms in health risk
assessments (NAS, 1994; NCRP, 1996; AIHC, 1994; US EPA, 1992, Exposure; US
EPA, 1992, SAB). Many, if not all, of the Agency's Regional Offices have now accepted
one or more risk assessments for civilian or military projects using the Monte Carlo
methods used in this report (e.g., US EPA ,1994, MC; US EPA, 1995, TG).

Following the standard practice in risk assessment as established by the National
Academy of Sciences, the US EPA, and various state agencies, Aiceon completed the
core of this human health risk assessment in accordance with this simplified diagram:
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Dose-Response

Assessment
Hazard Risk Uncertainty
Identification Characterization Analysis
Exposure
Assessment

In the first step, Hazard Identification (Section 4), Aiceon identifies those chemicals
present sufficient quantities or concentrations to pose a risk. The chemicals chosen for
further study are called the Study Chemicals. The next two steps happen in parallel. in
the Dose-Response Assessment (Section 5), Alceon reviews toxicological information
about each Study Chemical to estimate adverse health effects associated with different
doses. In the Exposure Assessment (Section 6), Alceon uses mathematical models
along with assumptions or probability distributions to estimate the frequency, intensity,
and duration of exposures that different groups of people may experience while living,
working, playing, or visiting the Study Area. In this step, we consider potential
exposures through various routes. In the fourth step, Risk Characterization and
Quantitative Uncertainty Analysis (Section 7), we estimate the probability and/or
magnitude of adverse health effects, if any, from the exposures of different groups of
people to the Study Chemicals. In the last step, Uncertainty Analyses (Section 8), we
discuss the many sources of variability and/or uncertainty in the methods, models, and
assumptions, and we discuss our approach to understanding or quantifying the
magnitude of the conservative assumptions in the overall approach.

The text concludes with a summary of the risk analyses (Section 9), a statement of
limitations (Section 10), a list of abbreviations and acronyms (Section 11), and a list of
references (Section 12). A map and all figures and tables appear following the text.
Appendices present supporting information.

Throughout this report, we present concentrations in soils in milligrams per kilogram
(mg/kg, equivalent to parts per million or ppm).

Throughout this report we present references in the following form: name of author, year
of publication, and, when we refer to more than one work by the same author in the
same year, an abbreviation of the title which is unique to that reference. For example,
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we refer to the US EPA's "Human Health Evaluation Manual" as "US EPA, 1990,
HHEM."

David E. Burmaéter, Ph.D., wrote this report with help from Andrew M. Wilson and
Steven J. Luis. Louis Anthony "Tony" Cox, Jr., Ph.D., and Brian H. Magee, Ph.D., wrote
several of the appendices. David Burmaster visited the industrial property and
surrounding neighborhood during the week of 17 April 1995.

Alceon ® is a registered trademérk 6f Alceon Corporation, Cambridge, MA.

TR,
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2. Overview of Probabilistic Methods

This section provides an overview of probabilistic methods and their application to
health risk assessment.

2.1 Why Probabilistic Methods are Useful

Traditional (deterministic) risk assessment methods select single point estimates
(including many values 290th or 295th percentile of the range) for each exposure
variable, such as soil ingestion rate, exposure frequency, absorption, body weight, etc.
A major drawback of this approach is that it does not include either (i) the variability
found in nature, physiology, and behavior or (ii) the uncertainty inherent in our
knowledge. Combining a set of point values -- some typical, some conservative, and
some very conservative -- yields a point estimate of risk that falls at an unknown
percentile of the full distribution of risk. The degree of health-protectiveness afforded by
the point estimate of risk, while believed to be highly conservative for reasons explained
later in this repont, is unknown and cannot be quantified by any deterministic method
(NCRP, 1996).

Rather than select one point estimate from a range of values, a better approach is to
use the entire range of possible values in the risk calculation (NCRP, 1996; Burmaster &
Anderson, 1994). This can be accomplished using probabilistic techniques, such as
Monte Carlo analysis, which uses distributions for input variables and generates
distributions of outputs (Rubinstein, 1981; Morgan, 1984; Morgjan & Henrion, 1990;
Burmaster & von Stackelberg, 1991). The resulting distribution provides a full
characterization of risks or cleanup-goals and corresponding percentiles, which is
considerably more useful and informative than a single value. The use of a probabilistic
approach, rather than the traditional point estimate approach, is now recognized within
the risk assessment community as more accurate and realistic (US EPA, 1992, RC; US
EPA, 1992, Exposure; US EPA, 1994, MC; US EPA, 1994, MC; US EPA, 1995, TG; US
EPA, 1995, GRC; Brawner, 1995; US EPA, 1995, EFH2; MA DEP, 1993; Morgan &
Henrion, 1990; NCRP, 1996).

2.2 Strengths of Probabilistic Methods

There are several reasons why probabilistic methods, such as Monte Carlo analysis, are
appropriate for assessing health risks (Thompson et al, 1992; Morgan & Henrion, 1990;
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US EPA, 1992, RC; US EPA, 1995, GRC; US EPA ,1994, MC; US EPA, 1995, TG;
Harris & Burmaster, 1992; Burmaster & Harris, 1993).

First, the standard definition of risk (see, e.g., Webster's Dictionary) starts: “risk is the
chance [meaning, probability] of harm....” At its root, risk assessment is the assessment
of the probability of an adverse outcome. However, in the past, deterministic risk
assessors routinely eliminated all aspects of probability in the deterministic methods
published in its standard Superfund guidance manuals (US EPA, 1989, 1991).
Probabilistic methods reintroduce the most basic notion of risk assessment - probability
-- into the practice of risk assessment.

Second, probabilistic methods quantify two very basic and important concepts --
variability (V) and uncertainty (U) -- at the same time as they estimate risks. In this
report, we adopt the most common definitions for the terms. Variability represents
heterogeneity or diversity in a well-characterized population, usually not reducible
through further measurement or study. Uncertainty represents ignorance -- or lack of
perfect information -- ag_out a poorly-characterized phenomenon or model, sometimes
reducible through further measurement or study. With probabilistic methods, risk
assessors can quantify and understand the importance of V and U in a study.

Third, probabilistic methods are “full information” methods. In a deterministic risk
assessment, the risk assessor destroys information about a site and the behavior of
people to select a single number purported to represent the entire phenomenon. For
example, in a deterministic risk assessment, the analyst discards most of the
information known about children's body weights and instead uses a single value, say,
20 kg to represent the range of body weights in a particular age group. In a probabilistic
risk assessment, the analyst does not destroy any information about a phenomenon. In
a probabilistic risk assessment, the analyst does not destroy important correlations and
dependencies among the variables. Thus, a probabilistic risk assessor uses the full
range of values in an appropriate statistical framework.

Fourth, the need to include variability and uncertainty in a risk assessment is inherently
understandable and acceptable to members of the public. The public understands that
all people do not weigh the same or drink the same amount of water every day.
Furthermore, it makes common sense to the lay public to incorporate this variability into
an analysis, rather than assume that all humans have identical physiology and
behaviors. While lay people do not understand all the mathematics inherent in
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probabilistic methods, they quickly embrace the ideas inherent in variability and
uncertainty.

2.3 Mechanics of Probabilistic Risk Assessment

In a traditional or deterministic risk assessment, the risk assessor builds a spreadsheet
to estimate the risk through numerical computation. To simplify the discussion, consider
a formula of the general form of Egn 1:

Risk=f(X,Y,Z) Eqgn 1

where Risk is a function of only three input variables, X, Y, and Z. In a deterministic risk
assessment, the analyst picks a single number for X, a single number for Y, and a
single number for Z. After the risk assessor inputs the function f( X, Y, Z), the
spreadsheet calculates the single value for Risk in Eqn 1.

In a probabilistic risk assessment, the basic risk equation remains the same:
Risk=1(X,Y,Z) Eqn 2

but, each of the input variables in Eqn 2 now is now underscored to indicate that each is
a random variable, i.e., a variable that can take different values within a range of values
as described by a probability distribution. In a probabilistic risk assessment, the analyst
takes not just a single number for each input but instead develops a whole distribution of
values that represent the variability and/or the uncertainty in the input. After the risk
assessor inputs the function f( X, Y, Z ), the spreadsheet -- along with auxiliary software
-- computes a full distribution of Risk as follows. In a first iteration, the computer picks a
random value from each of the three input distributions and computes a single value of
Risk. In a second iteration, the computer picks a different random value from each of the
three input distributions and computes a different single value of Risk. As the computer
performs additional iterations, the software stores each of the intermediate results and
displays them as a histogram of Risk. After many iterations (often 10,000 or more
iterations), the histogram of Risk values converges to the distribution of Risk sought by
the analyst.

In this analysis, we used commercially available software for the calculations:
Microsoft's Excel V4.0 on the Macintosh as the spreadsheet and Decisioneering’s
Crystal Ball V2.0 as the Monte Carlo simulation program (Decisioneering, 1992). We
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used 20,000 iterations for all loops in the final calculations, a number large enough to
demonstrate solid numerical stability.

2.4 Commonly Used Probability Distributions

This section provides an overview of the continuous distributions used in the
probabilistic sections of this risk assessment. These and other distributions are
discussed in many text books; the presentation and discussion in “Statistical
Distributions, Second Edition” (Evans, Hastings, & Peacock, 1993) is particularly helpful.

2.4.1 Background Information

In full-information risk assessments, analysts commonly use continuous distributions (as
opposed to discrete distributions) to represent exposure variables. In mathematics and
statistics, there are many different but equivalent ways to express the same probability
distribution in graphs or algebra, including but not limited to (i) probability density
functions (PDFs), (ii) cumulative distribution functions (CDFs), and (iii) lists of
percentiles (a different way to specify a CDF). Information presented in one form may
be converted into another form; for example, a CDF is the integral of a PDF. To make
this report as accessible as possible, we often use algebraic and graphical PDFs, but
the same information can be equally well presented using CDFs and tables of various
percentiles.

Statisticians often categorize probability distributions into families based on shape or
mathematical properties. For example, normal distributions always follow the familiar
bell-shaped curve when represented as PDFs or a less-familiar symmetric sigmoid
curves when presented as CDFs. Some families of distributions, e.g., normal
distributions, have been studied extensively because they occur throughout science and
engineering. These common distributions are called parametric distributions because
they can be complete_ly specified by one, two, or a small number of parameters. For
example, a normal distribution can be completely specified by two parameters, usually
chosen as the mean and the standard deviation. Other parametric distributions include
the uniform, triangular, lognormal, beta, and exponential distributions (Evans, Hastings
& Peacock, 1993; Mood et al, 1974, Benjamin & Comell, 1970; Parzen, 1960).

Nonparametric distributions also arise in practice for any one of several possible
reasons. First, some situations require the development of a nonparametric distribution,
i.e., a probability distribution not found in one of the common families (Green &
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Silverman, 1994; Tarter & Lock, 1993). Such a distribution is also called a custom or
empirical distribution. Second, sums and products of parametric distributions are rarely
parametric distributions. For example, we compute products and sums of distributions of
many random variables in this report. While these products and sums are valid
probability distributions, they do not come from a parametric family, so we call them
nonparametric, empirical, or custom distributions.

Every distribution, whether parametric or nonparametric, can be described by certain
summary statistics, including the minimum and the maximum value. Most people are
familiar with the two most common summary statistics -- the arithmetic mean (also
called the average or expected value) and the standard deviation. In this report, we also
use the median or 50th percentile, the value that occurs midway in a distribution, with
half the values falling below the median and half falling above the median. in other parts
of the report, we also use other percentiles, e.g., the 20th percentile, the 75th percentile,
and/or the 95th percentile of a distribution.

2.4.2 Parametric Distributions Used in this Report
Uniform Distribution

Also called the rectangular distribution, the uniform distribution is used to represent a
random variable that is equally likely to take any value between a minimum and a
maximum (Evans, Hastings & Peacock, 1993). The uniform distribution is illustrated in
Figure 1. A uniform distribution (with two parameters representing the minimum and the
maximum) can be written as:

Uniform(min, max) = Uniform(2, 6) Eqn 3

This random variable is equally likely to take any value between the minimum of 2 and
the maximum of 6. In this example, the random variable has a mean value of 4.

Risk assessors commonly use a uniform distribution to represent a random variable
chosen on the basis of professional judgment when only the minimum and maximum
are known. The distribution may represent variability, uncertainty, or a combination of
both.
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Triangular Distribution

The triangular distribution is also used to represent a random variable that takes values
between a minimum value and a maximum value. However, with the triangular
distribution, the values taken are not equally probable within the range (Evans, Hastings
& Peacock, 1993). Instead, some central values are more likely than extreme values,
with the overall relative frequency govemned by a peaked distribution formed by two
straight lines. Figure 1 illustrates the triangular distribution. A triangular distribution (with
three parameters) can be written as:

Triangular(min, mode, max) = Triangular(2, 3, 7) Eqgn 4

This random variable has a minimum of 2, a mode of 3, and a maximum of 7. The
mode, also called the peak, is the single most likely value for the random variable. In
this example, the random variable also has a mean of 4.

Risk assessors commonly use a triangular distribution to represent a random variable
chosen on the basis of professional judgment when the probability has a single mode
between a known minimum and maximum. The distribution may represent variability,
uncertainty, or a combination of both.

Normal Distributi

The normal distribution is used to represent a random variable without a fixed minimum
or a fixed maximum. Typically, normal distributions arise from “additive” processes
(Evans, Hastings & Peacock, 1993). Normal distributions also arise naturally from
repeatedly computing the averages of independent samples drawn from any type of
distribution, not just a normal distribution. Figure 1 illustrates the PDF and the
cumulative distribution function (CDF) for the normal distribution. A normal distribution
(with two parameters) can be: written as:

Normal(mu, sigma) = Normal(2, 1) Eqn5

In this example, the normal random variable has a mean of 2 and a standard deviation
of 1, meaning that approximately 68 percent of the area under the curve of the PDF
occurs within the interval from (mu - one standard deviation) to (mu + one standard
deviation). All normal distributions are symmetrical in shape -- it is equally likely for a
value to fall above the mean of the distribution as below the mean.
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LogNormal Distribution

The lognormal distribution is used to represent a random variable with a fixed minimum
of zero but with no fixed maximum. Thus, a lognormal random variable describes a
positive random variable. Typically, lognormal distributions arise from “multiplicative” or
“dilution” processes such as the dispersion of a contaminant in water or soil. Lognormal
distributions occur frequently throughout physics, chemistry, biclogy, and toxicology.
Figure 1 illustrates the PDF and the CDF for the lognormal distribution. A lognormal
distribution (with two parameters) can be written as (Evans, Hastings & Peacock, 1993;
Aitchison & Brown, 1957; Crow & Shimizu, 1988):

LogNormal(mu, sigma) = exp[Normal(mu, sigma)] Egn 6

exp[Normal(2, 1)]

In this example, the natural logarithm of the random variable has a mean of 2 and a
standard deviation of 1. All lognormal distributions are positive and asymmetric -- they
never have negative values and they always have a (long) tail to the right. Risk
assessors use lognormal distributions to describe many different types of random
variables, including exposure point concentrations (Ott, 1995; Ott, 1990), body weights,
skin areas, dietary intakes, breathing rates, and many other variables (US EPA, 1995,
EFH2; AIHC, 1994; Anderson et al, 1984).

Exponential Distribution

The exponential distribution is commonly used to represent a random variable for the
“time to failure” for a particular phenomenon, always a positive quantity. For example,
exponential distributions are excellent models for the length of time that a new
fluorescent tube will light before failing. Exponential distributions always have one
parameter (often called lambda) that specifies the shape and location of the distribution
and a long tail to the right (Evans, Hastings & Peacock, 1993). Figure 1 shows an
exponential distribution: .

Exponential(lambda) = Exponential(10) Eqn7

For an exponential distribution, the mean = 1 / lambda. Recently, investigators have
found that exponential distributions are excellent models for the length of time that a
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person lives in a particular house and the length of time that a person keeps a certain
job (Israeli & Nelson, 1992; Shaw & Burmaster, 1995).

Beta Distribution

The two-parameter beta distribution is used to represent a positive random variable with
a fixed minimum of zero and a fixed maximum of one. Beta distributions are often used
in risk assessments. For example, the fraction of a chemical absorbed in the human gut
rariges between zero and one. Figure 1 shows the PDF for a particular beta distribution.
A beta distribution has two_parameters (often called a and b) that specify the shape and
location of the distribution. A beta distribution can be written as:

Beta(a,b) = Beta(2, 4) Eqn 8

In this example, the mean = a/ (a + b) = 1/3. If the two parameters are equal (a = b),
then the beta distribution is symmetric. Otherwise, the distribution may be skewed to the
left or the right depending on the values of the two parameters.

With two additional parameters, called ¢ and d, the analyst can scale and translate a
two-parameter beta distribution into a four-parameter beta distribution as follows:

Betad(a,b,c,d) = Beta(a,b)ec+d | Eqn 9

This new random variable has a minimum value of d and a maximum value of (c+d).
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3. Description and Background of the Site

The Streamlined Human Health Risk Evaluation (Ecology & Environment, 1995, Report)
provides a description and history of the Celotex area.

3.1 Description of the Site

The industrial property is located at 2800 South Sacramento Avenue in Chicago, lllinois.
The map (from E&E, 1995, Report) shows the location of the property. The Site,
including the 18-acre industrial property and-a 6-acre property to the south (which is
currently used for storage of trucks), is located in a mixed industrial, commercial, and
residential area. It is bounded on the east by the Cook County Correctional Facility, on
the south by the Chicago Fire Department, Bureau of Support Services, and Farley
Candy Company, and on the north and west by residences and by the Atchison,
Topeka, and Santa Fe Railroad Lines.

Industrial buildings on the industrial property were demolished and removed in 1993.
Some concrete slabs and remnants of foundations remain. Following demolition, a soil
cover was placed on the property. The property is surrounded by a chain-link fence.

3.2 History of the Property

According to file information, the area was a farmstead before 1912. Little is known
about the use of the area before this time.

Asphalt roofing products were manufactured at the property from 1912 until 1982,
Information provided by Celotex and AlliedSignal indicates that the Barrett Company
and Allied Chemical Corporation operated a coal tar distillation and roofing plant at the
facility from 1912 until 1970. The Barrett Division of Allied Chemical Corporation was
purchased by Jim Walter Corporation in 1967 and a portion of the property was
transferred to the Celotex Corporation (Celotex), a subsidiary of the Jim Walter
Corporation. Allied Chemical Corporation sold four additional parcels of the facility's
property to Celotex between 1972 and 1975. In 1975, Allied Chemical Corporation sold
the tar plant property to Service Welding and Cleaning Company (Service Welding) and
subsequently leased a building from Service Welding to operate a sealer plant. Allied
Chemical Corporation closed the sealer plant in 1977 and in 1980 Celotex bought all
property that was purchased by Service Welding.
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The lllinois Environmental Protection Agency (IEPA) completed a PA of the property in
1989. Subsequent field investigations included an SSI in 1991, an ESI in 1992, and an
LSt in 1993. In addition to these studies, an US EPA Technical Assistance Team
assessed the area in 1993.

On 8 November 1994, US EPA issued a Special Notice of Liability and 104(e)
Information Request Letter to Celotex and AlliedSignal. The special notice letter
requested that the PRPs sample to determine the extent and degree of PAH
contamination in the vicinity of the industrial property, prepare an EE/CA to address
contamination in residential areas that exceeded cleanup goals, and initiate
investigation of the area. The PRPs submitted a Support Sampling Plan (SSP) (ERM,
1995) to US EPA to investigate the extent of site-related contamination within 2,500 feet
of the fenced property.

3.3 Previous Calculations of Risk-Based Cleanup Goals
3.3.1 Ecology & Environment, October 1995

In a report dated October, 1995, Ecology & Environment (E&E) estimated point values
for Risk-Based Cleanup Goals (RBCGs) for benzo(a)pyrene equivalents (BaPeq) in
surface soils at residences near the industrial property (E&E, 1995, Report). We
summarize their methods and findings here.

E&E selected PAHs based on "evaluation of analytical information provided by IEPA,
and consideration of potential off-site migration pathwaiys of contaminants as a result of
prior site operations.” Following common practice, E&E segregated the PAHSs into two
groups: carcinogenic and noncarcinogenic PAHs. To simplify calculations, the
carcinogenic PAHs were converted to benzo(a)pyrene (BaP) equivalents (using the
relative potencies reported in US EPA, 1993, PAHs). E&E selected pyrene to represent
the noncarcinogenic PAHs due to its high noncarcinogenic toxicity.

Based on a preliminary characterization of the exposure setting and local population,
E&E identified one exposure scenario, that of residents living in the vicinity of the
industrial property. Three pathways were identified: incidental soil ingestion, inhalation
of fugitive dust, and dermal contact with soil. E&E made numerous conservative
assumptions to characterize each of these pathways for two exposure cases: the default
reasonable maximum exposure (default RME) and central tendency (CT) exposure.
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E&E did not estimate cancer risks due to dermal exposure because US EPA has not
published toxicity values for dermal exposure. Therefore, only ingestion and inhalation
were evaluated for cancer risk.

In accordance with the National Contingency Plan (US EPA, 1990, NCP), E&E selected
10-4 as the target Incremental Lifetime Cancer Risk (ILCR) and 1 as the target Hazard
Index (HI) for carcinogenic and noncarcinogenic PAHs, respectively. E&E then
estimated point values for the RBCGs for carcinogenic and noncarcinogenic PAHs in
soils at residential properties.

There are at least two important conclusions to be drawn from the results of E&E's
analysis. First, E&E showed that the carcinogenic PAHs are approximately two orders of
magnitude (a factor of ~100) more important than are the noncarcinogenic PAHs in
estimating cleanup targets. We agree with E&E's result on this point. From E&E's result,
Alceon concludes that it is only necessary to consider carcinogenic PAHs when
deciding the proper risk management strategy for the residences near the industrial

property.

Second, E&E argued that the dominant pathway for exposure is the pathway for
incidental ingestion of soil. According to the formulas and input values chosen by E&E,
the second pathway -- the inhalation of fugitive dust -- is less important than the soil
ingestion pathway for both carcinogenic and noncarcinogenic PAHs by more than four
orders of magnitude (a factor greater than 10,000). In addition, citing guidance from the
US EPA, E&E did not quantify any risks from exposures via dermal exposure.

With these methods and assumptions, E&E estimated these deterministic point values
for RBCGs for surface soils at residences near the industrial propenty: (i) 8.6 mg/kg
BaPeq based on default RME exposure assumptions, and (ii) 72 mg/kg BaPeq based
on CT exposure assumptions.

3.3.2 Alceon Corporation, January 1996

In a report dated January 1996, Alceon estimated deterministic point values for RBCGs
for BaPeq in surface soils at residences near the industrial property (Alceon, 1996,
DRA). We summarize our methods and findings here.

Based on E&E's earlier report, and based on our own calculations, Alceon excluded the
fugitive dust pathway and the dermal contact pathway from further consideration and
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focused exclusively on the soil ingestion pathway in the risk assessment. Following the
precedent used in the E&E report, Alceon used 104 as the target for incremental
lifetime cancer risk.

With these methods and assumptions, Alceon estimated 29.5 mg/kg BaPeq as the
deterministic point value as the RBCG for surface soils at residences near the industrial

property.
3.3.3 Alceon Corporation, February 1996

In a report dated February 1996, Alceon estimated a probability distribution for the
RBCG for BaPeq in soils at residences near the industrial property (Alceon, 1996, PRA).
We summarize our methods and findings here.

Based on E&E's earlier report, and based on Alceon's earlier deterministic report,
Alceon completed a risk assessment using probability distributions for exposure
variables and a fixed value for the toxic potency of BaP. Following the precedent from
Ecology & Environment, and paralleling our earlier deterministic report, we included only
exposures via inadvertent ingestion, and we excluded exposures via fugitive dust and
dermal contact. Again, using the same target risk as US EPA's contractor, we defined
an acceptable distribution of risk as having, simultaneously, a 95th percentile of risk
equal to or less than 104 risk (this parallels US EPA's policy on RME risk), and a 50th
percentile (or median) of risk equal to or less than 105 risk (this parallels US EPA's
policy on CT risk). Together, these two simultaneous constraints create a risk
management policy that is more stringent than the one used by Ecology & Environment.

With these methods and assumptions, Alceon calculated the RBCG for surface soils at
residences near the industrial property as a (truncated) lognormal distribution,
summarized as follows: First, no single measurement of BaPeq may exceed 100 mg/kg
at any location. Second, the set of all Exposure Point Concentrations of BaPeq must
simultaneously meet all of these constraints developed from the truncated lognormal
distribution: '

minimum

zero mg/kg BaPeq

IA

10th percentile 6.3 mg/kg BaPeq

IN

20th percentile 9.4 mg/kg BaPeq

25 October 1996 16 Alceon ®



A.169.03 2800 S. Sacramento Site

12.8 mg/kg BaPeq

30th percentile <

40th percentile < 16.1 mg/kg BaPeq
50th percentile < 20.7 mg/kg BaPeq
60th percentile < 26.1 mg/kg BaPeq
70th percentile < 33.5 mg/kg BaPeq
80th percentile < 43.5 mg/kg BaPeq
90th percentile < 59.3 mg/kg BaPeq

95th percentile < 73.7 mg/kg BaPeq
maximum < 99.9 mg/kg BaPeq

These constraints on the distribution of concentrations of BaP equivalents create a
distribution of EPCs that meets the definition of an acceptable distribution of risk.

3.4 Purpose of this Report

Since February 1996, Celotex, AlliedSignal, and US EPA Region V have had several
discussions about the three risk assessment reports just summarized. In these
discussions, US EPA Region V has said that it no longer considers it appropriate for the
risk assessment to exclude exposures via dermal contact. Thus, the first purpose of this
new report is to include and quantify exposures via the dermal pathway.

In addition, through the discussions, Celotex, AlliedSignal, and Region V have agreed
on point values for some exposure variables but continue to differ on other exposure
variables. Thus, the second purpose of this report is to develop deterministic RBCGs for
BaPeq based on the deteministic assumptions now proposed by Celotex and
AlliedSignal and those now proposed by US EPA Region V.

The third purpose of this report is to develop the RBCG for BaPeq as a distribution
using full information methods, i.e., probabilistic methods. Since none of the exposure
variables are truly point values, the probabilistic calculations put the risk assessment on
a sound theoretical basis by treating the key exposure variables as the distributions that
they truly are. Monte Carlo simulations propagate the variability in the input variables in
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a mathematically correct way, and the simulations include the numerically important
correlations (Smith et al, 1992) but avoid the excessive compounding of conservatisms
inherent in default RME methods (Harris & Burmaster, 1992; Burmaster & Harris, 1993).

Finally, for convenience, appendices to this document compile all the background
materials submitted by Celotex and AlliedSignal and its contractors under one cover.
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4. Hazard Identification
4.1 Definition of the Study Area

We define the Study Area to be the residential neighborhood(s) in the vicinity of the
industrial property. Residences in this area are primarily located to the north and west of
the property. As in E&E's report, we limit the population of potentially exposed
individuals to those residents living within the 2,500-ft sampling radius defined by ERM
(1995, DSR). Since the industrial propenrty itself is not residential, the exposure
scenarios considered here are not applicable and an additional assessment would be
required to determine appropriate RBCGs for the industrial property itself.

In Appendix A, we present the measurements of the concentrations of carcinogenic
polycyclic aromatic hydrocarbons (cPAHSs) -- as expressed in terms of benzo(a)pyrene
equivalents (BaPeq, in mg/kg, equivalent to ppm) -- for 49 soil samples representing
"urban background concentrations" for this project. As explained further below, the 49
measurements range from 0.7 mg/kg BaPeq for a sample in Douglas Park to 26.0
mg/kg BaPeq for a sample some 1,500 to 2,500 ft north of the industrial property. Taken
together, these 49 samples provide a statistical population of measurements against
which other populations of measurements may be compared using nonparametric tests
such as the Wilcoxon Rank Sum test or the Kolmogorov-Smimov test.

Using powerful statistical methods, Louis Anthony Cox, Jr. has demonstrated that the
spatial pattern of the concentrations in these 49 samples are unrelated -- with 95
percent confidence -- to the industrial property (see Appendix B).

As shown by the lognormal probability plot in Appendix A, these 49 samples are well
described by this lognormal distribution (Gilbert, 1987; Draper & Smith, 1981):

In[BaPeq] = Normal(u, c)
which is equivalent to

[BaPeq] = exp[ Nomal(p, o) ]

exp[ Normal( 1.01, 0.61) ] in mg/kg
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This lognormal distribution for BaPeq in background soils has an arithmetic mean equal
to ~3.31 mg/kg and a 95th percentile equal to ~7.49 mg/kg.

It is essential to treat this lognormal distribution as a full mathematical object because it
is the object of interest. While the distribution presents the full information available in
the background soil samples, any single value drawn from the distribution -- or any
single statistic summarizing the distribution -- necessarily destroys information present
in the 49 laboratory measurements. Thus, when comparing the soil concentrations in a
“treatment” area to the soil concentrations in a "background" area, it is essential to
compare the full distribution of measurements for the "treatment” area to the full
distribution of measurements for the "background" area before drawing any inferences
about the similarities or differences between the two areas (e.g., Mood et al., 1974).

To put these numbers in context, we present information from two authoritative studies
of urban background concentrations of PAHSs in surface soils.

e Bradley et al. (1994). report the results from the measurement of 60 surficial,

- nonindustrial soil samples from three New England cities. These 60 samples
had a range from 0.26 mg/kg BaPeq to 21.31 mg/kg BaPeq, with an
arithmetic mean concentration of 2.44 mg/kg BaPeq and a 95-percent UCL on
the arithmetic mean of 3.32 mg/kg BaPeq.

* The US Agency for Toxic Substances and Disease Registry (ATSDR, 1990)
reports the results from hundreds of measurements of background
concentrations of PAHs in urban soils. In particular, applying US EPA's
provisional guidance to ATSDR's values reported in Table 5-5 (page 148), we
find that concentrations of BaPeq range from < 1 mg/kg to ~19 mg/kg in urban
soils.

These two authoritative sources on urban background soil concentrations demonstrate
that range and distribution of the site-specific concentrations of BaPeq in the 49
background surface soil samples analyzed in Appendix A fit well within the typical range
and distribution of BaPeq measurements in cities across the country.

4.2 Selection of the Study Chemicals

As discussed earlier, we select cPAHs as the Study Chemicals (Table 1) since they
dominate the calculations of RBCGs (E&E, 1995, Report).
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4.3 Physical-Chemical Properties of the Study Chemicals

Table 2 summarizes the key physical and chemical properties of the Study Chemicals.
We tabulated these values from databases compiled by the US EPA (US EPA, 1988,
and US EPA, 1994, HSDB). Taken together, the physical-chemical properties in this
table describe the tendencies of a particular compound to move and/or accumulate in
various environmental media (Mackay et al., 1992; Verschueren, 1983).

A review of the physical and chemical properties of the PAHs in the Study Area reveals
that the PAHs have: (i) moderate to high molecular weights, (ii) low water solubilities,
(iii) low vapor pressures, (iv) low Henry's Law constants, (v) moderate to high water-
carbon partition coefficients, and (vi) moderate to high octanol-water partition
coefficients. These properties show that the PAHs included as Study Chemicals for this
risk assessment generally adsorb strongly to soils, migrate slowly if at all in ground
water, and do not readily volatilize into soil gas or the atmosphere.
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5. Dose-Response Assessment

Table 3 summarizes the toxicological properties of the Study Chemicals for use in
estimating human cancer risks. A compound may have values for carcinogenic
responses from exposures via ingestion and/or inhalation. All toxicity values in this
report are based on lifetime exposures.

The toxicity profile for benzo(a)pyrene supporting Table 3 was downloaded in November
1995 from the US EPA's Integrated Risk Information System (IRIS) database (US EPA,
1995, IRIS). See the full profile in Appendix C.

The toxicity values in Table 3 are the most current and authoritative available from the
US EPA. Specifically:

e if available, the table presents values from US EPA's IRIS database (US EPA,
1995).

e if the IRIS database does not include a particular value, the table presents a
value from the US EPA's most recently published Health Effects Assessment
Summary Tables (US EPA, 1994, HEAST), if available.

* in general, if toxicity values are not available from any of these sources,
blanks appear in the table.

The US EPA frequently revises the toxicity values it publishes in the IRIS database and
the quarterly HEAST. The toxicity values in this risk assessment are current as of the
dates shown on the IRIS profiles in Appendix C, and as of the version of HEAST cited in
the references.

Published toxicity values may be based on either an exposure dose or an absorbed
dose. In estimating health effects, the dose and toxicity value must be concordant -- that
is, a risk estimate should use either an exposure dose and a toxicity value based on
exposure dose or an absorbed dose and a toxicity value based on absorbed dose.
According to US EPA (US EPA, 1989, HHEM), most of the US EPA's published
Reference Doses (RfDs) and some Cancer Slope Factors (CSFs) are based on
exposure dose.
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5.1 Carcinogenic Toxicity of the Study Chemicals

For each of the carcinogenic PAHs reported in the Study Area, Table 3 presents both
ingestion and inhalation Cancer Slope Factors (CSFs) measured in units of risk per unit
dose: inverse milligram of chemical per kilogram of body weight per day or
(mg/(kgeday))-1. The larger the CSF, the more potent the compound. The US EPA
estimates the CSFs based on the assumption that a nonzero dose causes a nonzero
probability of carcinogenic response; that is, the CSF values are generally based on a
linear nonthreshold dose-response model. The US EPA has not developed CSFs for
dermal exposures.

When the US EPA assesses a compound for human carcinogenicity, the Agency gives
a Weight-of-Evidence rating that reflects its confidence in the evidence of
carcinogenicity. (See Table 4; US EPA, 1986, FR). The US EPA's Weight-of-Evidence
categories generally parallel those developed by the International Agency for Research
on Cancer (IARC). As described in the documentation supporting the IRIS database
(US EPA, 1994-5), chemicals that give rise to cancer and/or gene mutations are
generally classified by US EPA as follows: (i) Group A: Human Carcinogen; (ii) Group
B1: Probable Human Carcinogen; limited human data; (iii) Group B2: Probable Human
Carcinogen,; sufficient evidence in animals and limited or no evidence in humans; and
(iv) Group C: Possible Human Carcinogen. If insufficient tests for carcinogenesis or
mutagenesis are available, the US EPA generally places the chemical in Group D: Not
Classifiable as to Human Carcinogenicity. A fifth category, Group E: Evidence of
NonCarcinogenicity in Humans, is rarely used. The US EPA usually publishes CSFs for
chemicals classified as Group A, B1, B2, or C. Finally, the US EPA has recently
proposed changes in the regulation of carcinogens, and the new "Cancer Guidelines"
are still open to pubic comment (US EPA, 1996, CG).

Unless human data from occupational exposures are available, the published CSF is
derived using a statistical model applied to the resuits of animal experiments, and,
unless otherwise indicated, the published CSF for humans is extrapolated from the 95-
percent upper confidence limit on the linear term of the linearized multistage model fit to
the animal data. By assumption and methodology, CSFs estimated this way are
uncertain values, and most experts believe that they are generally conservative (i.e.,
they tend to overestimate risk).
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Relative potencies for the carcinogenic PAHSs are listed in Table 5. Following standard
risk assessment practice to streamline calculations, we consider health risks due to BaP
equivalent concentrations. Benzo(a)pyrene equivalents for a contaminated medium are
calculated as a weighted sum by multiplying concentrations of nonbenzo(a)pyrene
PAHs by the relative potencies listed in Table 5. The resulting weighted concentrations
are then summed together with the benzo(a)pyrene concentration to yield a
benzo(a)pyrene equivalent concentration for the medium (US EPA, 1993, PAHs; see
also US EPA, 1986, Mixtures).

The US EPA has not published any CSFs for exposures to any compounds via dermal
pathways. However, based on conversations with Region V staff members, Celotex and
AlliedSignal have agreed to include possible risks from dermal exposure in the
calculations in this report by cross-assigning the CSFs for the ingestion pathway to the
dermal pathway.
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6. Exposure Assessment

This section describes the exposure scenarios considered in this risk assessment (US
EPA, 1990, EFH).

6.1 Summary of Exposure Scenarios
6.1.1 Classification of Soil

IEPA and ERM (1995, DSR) reported surface soil data for samples collected in the top
few inches of the soil. We assume that the wind has transported some PAHs from the
industrial property and has deposited some of them on surface soils. We also assume
that some of the PAHs now found in soils in the residential neighborhood come from
other industrial, commercial, and/or residential sources (ATSDR, 1990).

PAHs in soils are bound to the soil matrix by chemi-adsorption; this physical-chemical
bond increases in strength over time (GRI, 1995). For these reasons, exposure
scenarios have been limited to surface soils (E&E, 1995, Report). Following this
precedent, we consider only exposures to surface soils in the vicinity of the industrial

property.
6.1.2 Populations and Exposure Pathways of Concem

This human health risk assessment considers exposures to people living in houses near
the industrial property under current and future conditions (Table 6). We consider three
age groups of people: children (ages 1 through 6 years), teenagers (ages 7 through 17
years), and adults (ages 18 years and older).

Each person could theoretically be exposed to Study Chemicals via any of the exposure
pathways listed in Table 6:

* ingestion of soil outdoors (and dust indoors),
¢ inhalation of fugitive dust,
¢ dermal contact with sails,

e inhalation of soil vapors.
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As noted above, PAHs exhibit little tendency to volatilize. For this reason, we believe
inhalation exposures to soil vapors, and any risks resulting therefrom, to be negligible.
We do not consider them further.

As discussed above, E&E (1995, Report) estimated incremental cancer risks associated
with inhalation of fugitive dust for the population of residents. We have checked their
calculations, and we agree that the estimate of incremental cancer risk due to inhalation
of fugitive dust is more than four orders of magnitude (a factor of >10,000) less than the
incremental cancer risk due to incidental soil ingestion. Therefore, we do not consider
the inhalation pathway further.

As discussed in the E&E reported (October 1995), the US EPA has not published CSFs
for any PAHs via demal contact. Therefore, E&E did not evaluate cancer risks resulting
from dermal exposure in their report, nor did Alceon evaluate possible cancer risks via
dermal exposure in either of our earlier risk assessments (Alceon, 1996, DRA; 1996,
PRA). However, based on conversations with Region V staff members, Celotex and
AlliedSignal have agreed to include possible risks from dermal exposure in the
calculations in this report by cross-assigning the CSFs for the ingestion pathway to the
dermal pathway. It is assumed that exposure may occur via ingestion or dermal contact
with PAHs in outdoor surface soils or indoor dust.

6.2 Exposure Variables

For each of the exposed age groups in the residential population, we present three sets
of exposure variables. First, we present point values for the exposure variables for RME
conditions as proposed by Celotex and AlliedSignal. Second, we present full-information
distributions for the exposure variables as proposed by Celotex and AlliedSignal. Third,
we present point values for the exposure variables for default RME conditions as
proposed by Region V.

Table 7 shows the assumptions for each exposure variable. The first three columns of
Table 7 list the name of the exposure variable, the algebraic symbol for the exposure
variable, and its units. The next three columns list the point estimates proposed by
Celotex and AlliedSignal for RME conditions, along with a citation to the source
document. The next four columns of Table 7 list the distribution proposed by Celotex
and AlliedSignal, including the probability density function (PDF) for the distribution, its
suppon, its 95th percentile, and its median (50th percentile). The second page of the
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table lists the point estimates proposed by Region V for default RME conditions in a
similar format.

6.3 Detailed Exposure Scenarios

6.3.1 Exposure Frequency
6.3.1.1 Total Exposure Frequency

Celotex, AlliedSignal, and Region V agree that residents living near the Celotex property
are exposed for a total of 350 days per year. We use this point value in all the
calculations, both deterministic and probabilistic. This value originates from the default
values published among Interim Final Standard Exposure Factors (US EPA, 1991,
Default) for the Superfund program nationwide. The value is based on the implicit
assumption that each child, teen, and adult travels or vacations outside the
neighborhood some 15 days each year.

6.3.1.2 Exposure Frequency to Soils Outdoors

Celotex and AlliedSignal: Celotex and AlliedSignal consider that children, teens, and
adults have 164, 177, and 167 days per year, respectively, of exposure to surface soils
outdoors for RME conditions. These point values are chosen as the median values from
the distributions developed on a site-specific basis as follows (see also Appendix D):

The frequency of exposure is a function of presence at a potential exposure point and
activity while at the potential exposure point. In particular, since soil ingestion rates are
based on the quantity of soil ingested per day of exposure, we estimate the number of
days an individual is engaged in an activity that results in contact with surface soil in the
neighborhood.

Activities at the residence vary widely. Typical indoor activities include sleeping,
preparing and eating meals, watching TV, playing, doing housework. Typical activities
outdoors include playing and gardening. Data describing the frequency with which
individuals participate in these activities are scarce.

Lacking detailed information conceming activity pattems, we instead rely on a surrogate
for activities that involve exposures to surface soils. This surrogate is based on the
following reasoning: We know that weather strongly affects the nature and duration of
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outdoor activities. Since weather data have been routinely recorded at both O'Hare and
Midway Airports for many decades (US DoC, 1992), we use historical weather
conditions at Midway Airport -- the closer of the two airports in Chicago -- as a surrogate
for information conceming activity patterns outdoors.

Table 8 summarizes the average daily temperatures recorded at Midway Airport from
1961 to 1990 (US DoC, 1992). More specifically, the top two rows of data in Table 8
show the number of days per year that are at or above the stated temperature and -- by
difference -- the number of days per year that are below the stated temperature. For
example, in a typical year, there are 196 days with average temperatures > 50 degF and
169 days with average temperature < 50 degF.

For the children, we assume that the average daily temperature strongly influences the
fraction of days in a year on which a child plays outside and incidentally ingests some
surface soil. In particular, we assume these breakpoints as shown in Table 8:

e For days when the average daily temperature is < 32 degF, we assume that
no child incidentally ingests soils outdoors. On such cold days, the outdoor
soils are frozen and/or covered with snow and ice.

e For days when the average daily temperature is < 40 degF, we assume that 5
percent of children incidentally ingest some surface soils outdoors.

e For days when the average daily temperature is < 50 degF, we assume that
20 percent of children incidentally ingest some surface soils outdoors.

e For days when the average daily temperature is < 60 degF, we assume that
70 percent of children incidentally ingest some surface soils outdoors.

e For days when the average daily temperature is 2 70 degF, we assume that
100 percent of children incidentally ingest some surface soils outdoors.

These assumptions, shown in Table 8, define a range (distribution) for the number of
days per year that a child incidentally ingests surface soils or has dermal contact with
surface soils outdoors. The median of this distribution is 164 days per year, the value
chosen as the RME input for children in Table 7. Appendix D gives the full-information
probability distribution for this exposure variable in the form of custom, piece-wise linear
distribution.
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For teens, we assume the breakpoints shown in Table 8. These assumptions reflect the
fact that teens are more mobile and active outdoors than children, and so we assume
higher frequencies of exposure for teens than for children. These assumptions for teens
define a range for the number of days per year that a teen incidentally ingests surface
soils or has dermal contact with soils outdoors. The median of this distribution is 177
days per year, the value chosen as the RME input for teens in Table 7. Appendix D
gives the full-information probability distribution for this exposure variable in the form of
custom, piece-wise linear distribution.

For adults, we assume the breakpoints shown in Table 8. These assumptions reflect the
fact that adults are less mobile and active outdoors than teens, and so we assume
frequencies of exposure for adults similar to the ones for children. These assumptions
for adults define a range for the number of days per year that an adult incidentally
ingests surface soils or has dermal contact with surface soils outdoors. We use the
distribution for adults developed in Appendix D. The median of this distribution is 167
days per year, the value chosen as the RME input for adults in Table 7. Appendix D
gives the full-information probability distribution for this exposure variable in the form of
custom, piece-wise linear distribution.

Region V: For default RME conditions, Region V assumes that each child, teen, and
adult has exposure to surface soils outdoors on 350 days each year, i.e., every day
regardless of temperature or snow cover. Region V chooses 350 days per year as the
default RME exposure frequency from the default values published among the Interim
Final Standard Exposure Factors (US EPA, 1991, Default) for the Superfund program
nationwide.

6.3.1.3 Exposure Frequency to Dust Indoors

Celotex and AlliedSignal: For each age group, we estimate the number of days of
exposure to dust inside the house as the difference between the total number of days of
exposure each year (350 days per year) and the number of days of exposure to soils
outside the house. For RME conditions, children, teens, and adults have 186, 173, and
183 days per year, respectively, of exposure to dust inside the home.

Region V: For each age group, Region V also assumes that the number of days of
exposure to dust inside the house equals the difference between the total number of
days of exposure each year (350 days per year) and the number of days of exposure to
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soils outside the house. Since Region V assumes that each person has 350 days per
year of exposure outside the house for default RME conditions, the Region assumes, in
effect, that each person has zero days per year of exposure inside the house.

6.3.2 Exposure Duration

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V
about the duration of exposures for various age groups in the neighborhood.

Celotex and AlliedSignal: Celotex and AlliedSignal consider that children, teens, and
adults have 6, 11, and 1 years of exposure, respectively, in the neighborhood. The
value for total exposure duration for RME conditions (18 years) was chosen as the 90th
percentile of the neighborhood-specific occupancy duration, as detailed in Appendix E.

The duration of exposure is limited to the period in which an individual lives in the
neighborhood. When they were employees of the US Environmental Protection Agency,
Israeli and Nelson (1992) estimated distributions of time of residence for different
groups of US households based on data published by the Bureau of the Census. Israeli
and Nelson report that the distribution for total residence time is essentially an
exponential distribution with a different mean value for each housing group. An
exponential distribution is completely characterized by that mean value (as a single
parameter) and is highly skewed, with a long tail to the right.

Although Israeli and Nelson (1992) estimate distributions of residence time for
households and not for individuals, they state that corresponding residence times for
individuals are expected to be smaller. They also state that “[t]he values calculated here
can be considered to represent upper limits of the expected time for individuals to live at
the same residence." (emphasis added). Thus, our use of the distributions of residence
time estimated by Israeli and Nelson (1992) results in conservative estimates of
exposure duration for potentially exposed individuals.

US EPA Region V's contractor (Ecology & Environment, 1995, Letter) has stated "A
review of 1990 housing population statistics for Chicago's South Lawndale Community
Area (where the site is located) indicates that the census tract in which the site is
located includes a significant amount of owner-occupied households (approximately 49
percent) (US Census Bureau, 1990)."
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We accept 49 percent as the fraction (a point value) of owner-occupied houses in the
neighborhoods surrounding the industrial property. From this, 51 percent is the fraction
(a point value) of nonowner-occupied houses in the same neighborhoods (US BoC,
1991).

In Table 1V, in a column titled "Average total residence time, T (years)", Israeli and
Nelson (1992) show that the exponential distribution for "Owners" is characterized by a
mean value of 11.36 years and that the exponential distribution for Renters is
characterized by a mean value of 2.35 years. From these values, we estimate the RME
total exposure duration as the 90th percentile of the neighborhood-specific occupancy
as 18 years. (See also supporting materials in Appendix E.)

To estimate the exposure duration for each age group, we assumed that a potentially
exposed individual spends his or her first years of life at the residence. LaGoy (1987)
reports that children of age one year or less have little direct contact with soil. We note
that the assumption of spending the first years of life at a residence near the property is
heaith protective because the rate of soil ingestion is generally higher for children than
for teens or adults. Also, other exposure factors (e.g., low body weight for children)
combine to increase the dose received by children relative to older age groups.

For children, we assume that exposures to surface soil start at age 1 year. Therefore,
we consider that RME exposure for children begins at age one year and continues
through age 6 years, for a total of 6 years. This value is reported in Table 7.

For teens, the duration for RME exposure is 11 years (from age 7 years through age 17
years). We assume older children and teenagers are exposed for the time during which
they reside in the vicinity of the industrial property. Subtracting exposure during
childhood, this is a period of 11 years. Therefore, RME exposure for teens covers 11
years, as reported in Table 7.

For adults, we use subtraction to find that adults are exposed for 1 year for RME
conditions.

Overall, we quantify RME exposures to a person for a full 18 years -- 6 years as a child,
11 years as a teen, and 1 year as an adult. This method is conservative because it
assigns RME exposure to begin with the group (children) most likely to receive the
highest dose. Appendix E gives the full-information probability distribution for this

25 October 1996 31 Alceon ®



A.169.03 2800 S. Sacramento Site

exposure variable in the form of a compound distribution for the mixture of two
exponential distributions. In each iteration of the Monte Carlo simulations, we
conservatively assign the first years of exposure the child, then any remaining balance
of exposure to the teen, and then any remaining balance of exposure to the adult.

Region V: For default RME conditions, Region V assumes that each person lives in the
neighborhood for a total of 30 years, with this time allocation: 6 years for children, 11
years for teens, and 13 years for adults. Region V chooses 30 years as the default RME
exposure duration from the default values published among the Interim Final Standard
Exposure Factors (US EPA, 1991, Default) for the Superfund program nationwide.

6.3.3 Exposure via Ingestion of Outdoor Soils and Indoor Dust

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V
about the ingestion rate of outdoor soil and indoor dust for various age groups for the
default RME conditions. Table 7 also shows the distributions used in the simulations.

6.3.3.1 Ingestion of Outdoor Soil

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal assume that
children, teens, and adults incidentally ingest 200, 100, and 100 mg/day of outdoor soils
on a day of outdoor exposure. In the Monte Carlo simulations, Celotex and AlliedSignal
assume the lognormal distributions listed in Table 7 for children, teens, and aduits, as
based on Thompson & Burmaster (1991).

For children, LaGoy (1987) and Hawley (1985) report that incidental soil ingestion can
occur outdoors at any age, but is most prevalent among young children because young
children (less than 3 or 4 years old) often mouth small objects.

Rates of incidental ingestion of soil outdoors by young children have been directly
measured by several researchers. In particular, Calabrese et al. (1989) and Binder et al.
(1986) have applied the Limiting Tracer Method (LTM) to the problem of estimating
incidental soil ingestion rates in young children. In these studies, soil ingestion rates
were estimated by analyzing feces for trace elements found in soils but not typically
found in foods. Accounting for differences in experimental design, their resuits are
consistent.
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Based on the analysis by Binder et al. (1986), Thompson and Burmaster (1991)
estimate distributions of incidental soil ingestion rates outdoors for young children. We
use these results here. Thompson and Burmaster (1991) report that the data follow this
lognormal distribution: exp[N( 4.13, 0.80 )] in mg/day. For RME conditions, the 90th
percentile of this distribution is 173.1 mg/day. Rather than use the 90th percentile of the
distribution in this risk assessment, we instead use 200 mg/day as the RME value for
the ingestion rate for outdoor soil and indoor dust in accordance with US EPA guidance
as the ingestion rate for children (see Table 7). This higher value is the 93rd percentile
of the distribution of measured values.

For teens, LaGoy (1987) notes that soil ingestion rates for older children and teenagers
have not been studied extensively. Both LaGoy (1987) and Hawley (1985) indicate,
however, that soil ingestion rates are expected to decrease as children grow older
because mouthing of objects decreases with age. LaGoy (1987) assumes incidental soil
ingestion rates of children 6 to 11 years of age to decrease by at least 50 percent.
LaGoy suggests that incidental ingestion rates are lower still for older children and
teenagers. Based on LaGoy, we assumed the RME ingestion rate for soils outdoors and
dust indoors for teens is half that of children, resulting in a 93rd percentile of 100
mg/day. This value is reported in Table 7. For the Monte Carlo simulations of teens, we
divide the lognormal distribution for soil ingestion rate of children by a factor of two.

For adults, LaGoy (1987) notes that soil ingestion rates for adults who are frequently in
contact with soil are about half those for older children. We assumed the ingestion rates
for soils outdoors and dust indoors for adults to be described by the same distribution as
that used for teens. The 93rd percentile of this distribution is 100 mg/day. This value is
reported in Table 7. For the Monte Carlo simulations of adults, we divide the lognormal
distribution for soil ingestion rate of children by a factor of two.

Region V: For default RME conditions, Region V assumes these rates for the incidental
ingestion of soils outdoors: 200 mg/day for children, 200 mg/day for teens, and 100
mg/day for adults. Region V chooses these values for default RME conditions from the
default values published among the Interim Final Standard Exposure Factors (US EPA,
1991, Default) for the Superfund program nationwide.
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6.3.3.2 Ingestion of Indoor Dust

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal assume that
children, teens, and adults incidentally ingest 200, 100, and 100 mg/day of indoor dust
on a day of indoor exposure. In the Monte Carlo simulations, Celotex and AlliedSignal
assume the lognormal distributions listed in Table 7 for children, teens, and adults, as
based on Thompson & Burmaster (1991). These RME values and distributions for
ingestion of indoor dust are identical to those assumed for the ingestion of soils
outdoors.

Region V: Since Region V assumes that all people ingest some soils outdoors for 350
days per year for default RME conditions, it is not applicable to have an exposure
variable for the ingestion of dust indoors for default RME conditions. As mentioned
earlier, Region V bases its default RME exposure scenario on the default values
published among the Interim Final Standard Exposure Factors (US EPA, 1991, Default)
for the Superfund program nationwide.

6.3.4 Exposure Point Concentration for Dust Indoors

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V
about the exposure point concentration for indoor dust.

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal use 0.42 (42
percent) as the transfer coefficient for the fraction of outdoor soil contributing to indoor
dust. For the Monte Carlo simulations, Celotex and AlliedSignal use the lognormal
distribution listed in Table 7 and developed in Appendix F as the full-information
exposure factor. The point value (42 percent) is the median of the lognormal distribution.

As shown in Appendix F, dust inside a house contains some materials generated
indoors and some materials carried into the house from outdoors. Using naturally-
occurring conservative tracer chemicals, many researchers have measured the fraction
of materials in house dust that originate outside a house. After analyzing these studies
in detail and fitting a parametric distribution to them, we use 0.42 as the median
"Transfer Coefficient" for this risk assessment. In other words, 42 percent of the material
in house dust comes from soils outside the houses and the remainder comes from
activities inside the house. Thus, for RME conditions, we model the exposure point
concentration for BaPeq in dust inside the house as 42 percent of the concentration of
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BaPeq in soils outside the house. As shown in Appendix F, we use a truncated
lognormail distribution to model the Transfer Coefficient, i.e., the fraction of indoor dust
that originates from outdoor soils. As shown in Table 7, the median of this distribution is
0.42 and the 95th percentile is 0.74 (see also Appendix F; Trowbridge & Burmaster,
1996).

Region V: For default RME conditions, Region V considers that all exposures occur
outside the house (or equivalently, that ail indoor exposures have a Transfer Coefficient
equal to one so that concentrations inside the house are identical to the concentrations
outside the house). As mentioned earlier, Region V bases its default RME exposure
scenario on the default values published among the Interim Final Standard Exposure
Factors (US EPA, 1991, Default) for the Superfund program nationwide.

6.3.5 Oral Absorption Adjustment Factor (AAF)

Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V for
the oral absorption adjustment factor (oral AAF) for PAHs in soil and dust.

Exposure dose does not take into account the body's greater or lesser absorption of
chemicals encountered in different media. We incorporated absormption adjustment
factors (AAFs) into the risk equations to account for the difference between the
measured concentration in the medium of exposure and the amount absorbed by the
body. Celotex, AlliedSignal, and Region V all define the AAF as the ratio of the
absorption (bioavailability) by the route and medium of interest to the absorption by the
route and medium used in the dose-response study for the compound.

Celotex and AlliedSignal: For RME conditions, Celotex and AlliedSignal use 0.27 (27
percent) as the oral AAF from both outdoor soils and indoor dust. For the Monte Carlo
simulations, Celotex and AlliedSignal use the four-parameter beta distribution listed in
Table 7 and developed in Appendix F as the full-information exposure factor. The point
value (27 percent) is the median of the four-parameter beta distribution.

Evidence in the literature suggests that PAHs adsorbed to soils are far less than 100
percent available when ingested. Thus, the dose received by an exposed individual
comes from <100 percent of the PAH concentration in soil.

The Gas Research Institute funded a study of the behavior and toxicity of organic
chemicals in soils (GRI, 1995). As part of this study, Prof. Martin Alexander of Cornell
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University reviewed the literature to evaluate the current understanding of the
bioavailability of organic compounds that have been present in soils for extended
periods.

From his review, Alexander finds that organic compounds become more tightly bound to
soil with increasing time because the compounds become sequestered within the soil
itself, instead of simply remaining on the surface (GRI, 1995; Hatzinger & Alexander,
1995). This aging and sequestration affects the behavior of the compound bound to the
soil, making the compounds much less available to biological systems (Bonaccorsi et al,
1984). This decreased extractability and bioavailability causes decreased
biodegradability and toxicity. For chemicals like BaP that form strong bonds with soil, it
is sometimes impossible to release the PAHs without using a Soxhlet extraction (boiling
in strong acid for several hours). Alexander also indicates that bioavailability may also
depend on the organic fraction of the soil.

As shown in Appendix G, Brian H. Magee, a toxicologist with Ogden Environmental and
Energy Services Company, has quantified the oral AAF after reviewing the literature on
the absorption of PAHs from foods and soils (Ogden, 1996). Based on the materials in
Appendix G, we estimate the RME oral AAF from soil and dust as 0.29 (or 29 percent)
for all three age groups. Based on the same information in Appendix G, we use a four-
parameter beta distribution (Beta[1, 3, 0.945, 0.07]) in the Monte Carlo simulations.

Region V: The Region assumes that the oral AAF for soils equals 0.9 (or 90 percent) for
default RME conditions for all three age groups considered in the risk assessment

- (Podowski, 1996). Although Region V does not explicitly consider the oral AAF for
indoor dust, it is implicitly the same as the oral AAF for outdoor soils .

6.3.6 Adherence of Soil and Dust to Skin

Table 7 shows the assumptions for dermal exposure made by Celotex and AlliedSignal
and by Region V about the adherence of soil and dust to the skin of children, teens, and
adults.

6.3.6.1 Adherence of Outdoor Soil to Skin

Celotex and AlliedSignal: Drawing on US EPA's published report (US EPA, 1992,
Dermal), we assume that 1 mg/(cm2eday) of outdoor soils adheres to the skin of
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children, teens, and adults for RME conditions. This is greater than the 95th percentile
of the full-information distribution developed from US EPA's data.

We find that a lognormal distribution gives a good fit to data published by the Agency
(US EPA, 1992, Dermal) for the adherence of outdoor soils to skin of children, teens,
and adults. The distribution -- exp[Normal[-1.71, 1.01)] -- has a median value of 0.18

mg/(cm2eday) and an upper 95th percentile of 0.95 mg/(cm2eday), a value in keeping
with the RME point value.

Region V: Region V assumes the same amount of outdoor soil and indoor dust adhere
to the skin of children, teens, and adults: 1 mg/(cm2eday) for default RME conditions.
This number is the default value from Agency guidance (US EPA, 1992, Dermal).

6.3.6.2 Adherence of Indoor Dust to Skin

Celotex and AlliedSignal: Based on the research, Kissel et al. (1996) report that less
indoor dust adheres to skin than does outdoor soil because indoor dust has less
moisture content than does outdoor soil. Based on this recently published research from
the University of Washington, we assume that 0.2 mg/(cm2eday) of indoor dust adheres
to the skin of children, teens, and adults for RME conditions (Kissel et al, 1996). By
dividing the distribution for the adherence rate of outdoor soil to skin by a factor of five,
we arrive at the distribution for the adherence rate of indoor dust to skin. This lognormal
distribution has a median of 0.05 and a 95th percentile of 0.24 (see Table 7).

Region V: Since Region V assumes that all people have dermal contact with soils
outdoors for 350 days per year for default RME conditions, it is not applicable to have
an exposure variable for the dermal contact with dust indoors for default RME
conditions. To the extent that the Region allows for exposure to indoor dust, the
adherence rate for indoor dust for default RME conditions is the same as the adherence
rate for outdoor soils for default RME conditions. As before, Region V bases its RME
exposure scenario on the default values published among the Interim Final Standard
Exposure Factors (US EPA, 1991, Default) for the Superfund program nationwide.

6.3.7 Total Skin Surface Area
Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V

about the total skin surface area for children, teens, and adults.
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Celotex and AlliedSignal: For RME conditions, we assume these values for total skin
surface area from US EPA guidance documents: 0.73 m2 for children, 1.5 m2 for teens,
and 2 m2 for adults. (US EPA, 1990, EFH). In the probabilistic exposure assessment,
we use Costeff's formula (Costeff, 1966; Murray & Burmaster, 1992) to estimate the
total skin surface area of children, teens, and adults as a function of body weight.
Although Costeff originally developed his formula for children and teens, it also provides
a good fit for adults as well.

Region V: Region V assumes the same total skin surface area for RME conditions: 0.73
m2 for children, 1.5 m2 for teens, and 2 m2 for adults. These numbers are consistent
with default values presented in Agency guidance (e.g., US EPA, 1990, EFH).

6.3.8 Fraction of Skin Exposed

Table 7 shows the values assumed by Celotex and AlliedSignal and by Region V to
represent the fraction of skin exposed to dermal contact with outdoor soils and indoor
dust by the different age groups.

Celotex and AlliedSignal: Celotex and AlliedSignal assume that each child, teen, and
adult has 25 percent of his or her total skin area exposed to dermal contact to soils
outdoors for RME conditions. According to tables published by US EPA (Anderson,
1984), 25 percent coverage corresponds, for example, to having dermal contact with the
forehead, face, both ears, neck, both hands, both forearms, and both feet everyday.
According to the same tables, 25 percent coverage also corresponds to having dermal
contact with both hands, both feet, and both lower legs. In the probabilistic exposure
assessment, Celotex and AlliedSignal also use 25 percent as a point estimate for the
fraction of skin exposed.

Region V: Region V assumes that each person has 25 percent of his or her total skin
area exposed to dermal contact to soils outdoors for default RME conditions. Although
Region V does not explicitly consider the fraction of skin exposed for indoor dust, it is
implicitly the same as the fraction of skin exposed for outdoor soils.

6.3.9 Dermmal Absorption Adjustment Factor (AAF)
Table 7 shows the assumptions made by Celotex and AlliedSignal and by Region V

about the dermal absorption adjustment factor for soil and dust.
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Exposure dose does not take into account the body's greater or lesser absorption of
chemicals encountered in different media. In estimating potential health effects, the
medium of exposure for which a dose is being estimated must be the same as the
medium of exposure on which the published toxicity value is based. Celotex,
AlliedSignal, and Region V all incorporate absorption adjustment factors (AAFs) into the
risk equations to account for the difference in absorption of the applied dose in the
medium of exposure. The AAF is defined as the ratio of absorption (bioavailability) by
the route and medium of interest to absorption by the route and medium used in the
dose-response study for the compound.

Celotex and AlliedSignal: As shown in Appendix G, Brian H. Magee has quantified the
dermal AAF (Ogden, 1996). Based on Appendix G, we estimate the dermal AAF for
outdoor soils and indoor dust as 0.02 (or 2 percent) for RME conditions for all three age
groups. Based on Appendix G, we model the dermal AAF as the ratio of two scaled and
translated beta distributions, where the numerator equals Beta4[1, 5, 0.147, 0] and the
denominator equals Beta4[4, 1, 0.397, 0.603] (see Table 7, Appendix G, and Burmaster,
1996).

Region V: Region V assumes that the dermal AAF for outdoor soils equals 0.15 (or 15
percent) for default RME conditions for all three age groups (Podowski, 1996).

6.3.10  Other Exposure Assumptions

Table 7 also presents the values assumed for other exposure variables. The values
chosen by Celotex and AlliedSignal and by US EPA Region V are in keeping with
generally accepted values in risk assessment for the Superfund program (US EPA,
1989, HHEM; US EPA, 1990, EFH).

6.3.10.1 Lifetime

As shown Table 7, Celotex, AlliedSignal, and Region V assume that a person lives 70
years for both the deterministic and the probabilistic calculations.

6.3.10.2 Body Weight

Celotex, AlliedSignal, and Region V make similar assumptions regarding the body
weight of children, teens, and adults. Table 7 shows the values for the three age groups.
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Celotex and AlliedSignal: For children for RME conditions, we average reported annual
average body weights from age 1 year through age 6 years (Anderson et al., 1984). The
average body weight for boys and girls in this age group is 16.4 kg. For teens for RME -
conditions, we average reported annual average body weights from age 7 years through
age 17 years (Anderson et al., 1984). The average body weight for boys and girls in this
age group is 44.9 kg. For adults for RME conditions, we use the standard US EPA value
for the average weight of an adult men and women, 70 kg.

For the simulations, we developed lognormal distributions for the body weights of
children and teenagers (using equal proportions of boys and girls in each age group)
based on fitted distributions in the literature (Burmaster, Lloyd & Crouch, 1994). For
children, we use the lognormal distribution exp[Normal(2.69, 0.33)] for body weights
measured in kg. The median, mean, and 90th percentile of this distribution are 14.7,
15.6, and 22.5 kg, respectively. For teens, we use the lognormal distribution
exp[Nomal(3.75, 0.37)] for body weights measured in kg. The median, mean, and 90th
percentile of this distribution are 42.5, 45.5, and 68.3 kg, respectively. We use this
published lognormal distribution for the body weights of adults measured in kg:
exp[Normal(4,263m 0.206)] (Table 7; and Brainard & Burmaster, 1992).

Region V: Region V uses 15, 45 and 70 kg as the RME body weights for children, teens,
and adults, respectively. The values come from the default values published among the
Interim Final Standard Exposure Factors (US EPA, 1991, Default) for the Superfund
program nationwide or from other Agency tables (e.g., US EPA, 1990, EFH).

6.4 Estimation of Doses to Populations of Concern

We used the equations shown in Table 9 to estimate doses and cancer risk. Table 10
shows the formulas used in the spreadsheet. The methods used to calculate the
average daily doses are described in the following subsections.

6.4.1 Forward Calculation of RBCGs

In their deterministic risk assessment, E&E (1995) calculated point values for RBCGs by
rearranging the risk equation, substituting the single target cancer risk, and solving for
the fixed exposure point concentration. We refer to this calculation as a backward
calculation. The backward calculation is acceptable in deterministic RBCGs when all the
variables are point values. However, this backward calculation fails when using
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probability distributions to calculate the RBCG as a distribution (Burmaster, Lloyd &
Thompson, 1995; Burmaster & Thompson, 1995).

An alternative calculation, one that gives correct answers for all calculations, consists in
calculating the acceptable exposure point concentration with the original risk equation
(i.e., without using algebra to rearrange the risk equation). Since the RBCG is not
solved for directly, it must be solved iteratively, by substituting different values for the
RBCG until the target cancer risk (or a value slightly smaliler) is reached. We refer to this
direct approach as the iterative forward calculation. This iterative forward method works
correctly for both deterministic and probabilistic calculations (Burmaster, Lloyd &
Thompson, 1995; Burmaster & Thompson, 1995).

6.4.2 Estimation of Average Daily Dose on a Day of Exposure

For each Study Chemical, we use the equations in Table 9 to estimate an average daily\
dose on a day of exposure, ADD(day), separately for each exposure pathway and each
life stage that contribute to a given scenario. All ADD(day) values are in units of
milligrams of Study Chemical per kilogram body weight per day (mg/(kgeday)).

As shown in the formulae in Table 9, the ADD(day) is calculated for each age group by
multiplying the Acceptable Exposure Point Concentration, the appropriate Absorption
Adjustment Factor, the Contact Rate for the age group, and the Conversion Factor and
by dividing by the Body Weight for the age group.

6.4.3 Estimation of Average Daily Dose over a Lifetime

For each Study Chemical, we use Equation 3 in Table 9 to estimate an average daily
dose over a lifetime of exposure, ADD(life). The ADD(life) takes into account the
frequency (days per year) with which exposure occurs.

We estimate ADD(life) separately for each age group by multiplying the average daily
dose on a day of exposure (ADD(day)) by the Exposure Frequency and an appropriate
Conversion Factor.

6.4.4 Estimation of Average Daily Dose (Total)

We use Equation 3 in Table 9 to estimate a total average daily dose over a lifetime of
exposure, ADD(total). The total average daily dose experienced during a lifetime,
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ADD(total), takes into account the fraction of a lifetime during which the exposure
occurs. Thus, ADD(total) is equal to ADD(life) if exposure occurs throughout the lifetime,
but is smaller than ADD(life) if exposure occurs during only some years. Of course, the
total ADD is the sum of the doses received from the ingestion pathway and the dermal
contact pathway.

We estimate ADD(total) by muitiplying the value of ADD(life) for each age group by the
duration of exposure for that age group, summing the three resulting products (one for
each age group), and dividing by the number of years in a lifetime.
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7. Risk Characterization
7.1  Selection of Target Cancer Risk
7.1.1 Target Risk for Deterministic Calculations

In their earlier deterministic risk assessments, both E&E (1995) and Alceon (1996) used
the target cancer risk of 10°4 (or one in ten thousand).

This risk management target is consistent with the current National Contingency Plan
(US EPA, 1990, NCP), published in the Federal Register in March 1990:

For known or suspected carcinogens, acceptable exposure levels are
generally concentration levels that represent an excess upper bound
lifetime cancer risk to an individual of between 10-4 and 10— using
information on the relationship between dose and response. The 10-6 risk
level shall be used as the point of departure for determining remediation
goals for alternatives when ARARSs are not available or are not sufficiently
protective because of the presence of multiple contaminants at a site or
multiple pathways of exposure. (p. 8848)

The "point of departure" reflects US EPA's preference for remedies that are at the more
protective end of the risk range. However, '

a variety of site-specific or remedy-specific factors . . . will enter into the
determination of where within the risk range of 10-4 to 106 the cleanup
standard for a given contaminant will be established. (p. 8717)

These factors may be related prevailing background concentrations, to other exposures
to the same compounds in foods or other media, to other exposure issues (e.g., the
cumulative effect of multiple contaminants), to uncertainty (e.g., the weight of scientific
evidence conceming health effects), or to technical issues (e.g., detection limits for
contaminants).

25 October 1996 43 Alceon ®



A.169.03 ' 2800 S. Sacramento Site

7.1.2 Target Risk for Probabilistic Calculations

Following these precedents and the concepts presented in US EPA (1992, Exposure),
we judge the acceptability or unacceptability of a distribution of risk using two
constraints on the distribution (Burmaster & Thompson, 1994).

» For a first constraint -- and in keeping with the approach taken by E&E -- we

associate a target cancer risk of 1 in 10,000 (equivalent to 10-4) with the 95th
percentile of the risk distribution. In other words, for a distribution of risk to be
acceptable, its 95th percentile must be <10-4. In US EPA's terminology, this
constraint takes the place of the Reasonable Maximum Exposure (RME
exposure).

AND

¢ For a second constraint, we associate a target cancer risk of 1 in 100,000
(equivalent to 10-5 risk) with the median risk. In other words, for a distribution
of risk to be acceptable, its 50th percentile (median) must be <10-5. In US
EPA's terminology, this constraint takes the place of the Central Tendency
Exposure (CT exposure).

To be acceptable under this definition, a distribution of risk must meet both the
constraints simultaneously. These two simultaneous constraints create a risk
management policy that is more stringent than the one used by Ecology & Environment.

These constraints agree with the concepts of (i) "high-end" risk or "Reasonable
Maximum Exposure" risk and (ii) “typical” risk or "Central Tendency" risk as used in US
EPA guidance in the Federal Register (US EPA, 1992, Exposure). This risk
management policy -- based on two simultaneously binding constraints, one on the 95th
percentile risk and one on the median risk -- resembles policies recently accepted by
the US EPA at various Superfund sites when remediating or decommissioning facilities
run by the US Department of Defense (US DOD) or by the US Department of Energy
(US DOE).

7.2 Estimation of RBCGs

Tables 9 and 10 show the formulae used to estimate the incremental lifetime cancer risk
(ILCR) from the total average daily dose. In keeping with US EPA's methods to estimate
the pathway-specific ILCRs (US EPA, 1989, HHEM), we multiply the ADD(total) for each
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Study Chemical by the appropriate CSF (i.e., the ingestion or inhalation CSF for that
Study Chemical).

Table 10 shows the formulae in the spreadsheet that were used to calculate a target
cancer risk of just equal to or less than 104 risk. This target cancer risk is enclosed by a
box and is located in the lower right-hand corer of the spreadsheet.

7.3 Estimated RBCGs for the Study Area
7.3.1 RBCG Based on Celotex's and AlliedSignal's Deterministic Assumptions

Using Celotex's and AlliedSignal's exposure factors for RME conditions in Table 7, we
calculate that the deterministic RBCG for BaPeq in outdoor surface soils in the
residential neighborhoods near the industrial property equals 27.5 mg/kg BaPeq for
RME conditions (see calculations in Table 11).

7.3.2 RBCG Based on Celotex's and AlliedSignal's Probabilistic Assumptions

Table 13 shows the report from Crystal Ball® (Decisioneering, 1992). From the full
simulation of 20,000 iterations and from the report, we see that an acceptable
distribution of risk (one that meets both constraints defining the acceptability of a
distribution of total risk for both the ingestion and the dermal pathways) occurs when the
BaPeq concentration follows the distribution below. Since this distribution of BaPeq
concentrations causes a distribution of risk that simultaneously meets (read, is equal to
or less than) the two constraints defining the maximum acceptable risk, it is, by
definition, the cleanup target for BaP concentration in soils.

minimum = 0 mg/kg BaPeq

10th percentile < 6.4 mg/kg BaPeq

20th percentile < 9.5 mg/kg BaPeq
30th percentile < 12.8 mg/kg BaPeq
40th percentile < 16.4 mg/kg BaPeq
50th percentile < 20.8 mg/kg BaPeq
60th percentile < 26.1 mg/kg BaPeq
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70th percentile < 33.3 mg/kg BaPeq
80th percentile < 43.6 mg/kg BaPeq
90th percentile < 58.2 mg/kg BaPeq

95th percentile < 72.7 mg/kg BaPeq
maximum < 99.9 mg/kg BaPeq

This distribution, a lognormal distribution truncated at 100 mg/kg BaPeq, has an
arithmetic mean equal to 27.1 mg/kg BaPeq. See Figure 2. In a statistical sense, this
probabilistic RBCG dominates the distribution of background concentrations discussed
earlier (Clemen, 1991; see also Appendices A and B). In a colloquial sense, this
probabilistic RBCG "is larger than" the distribution of background concentrations in
Appendix A.

From the simulation with 20,000 iterations and the report from Crystal Ball®
(Decisioneering, 1992), we verify that the Incremental Lifetime Cancer Risk attributable
to this distribution of BaPeq in soil meets the two constraints that define the acceptability
of a distribution of total risk (the sum of the risk from the ingestion and dermal
pathways):

10th percentile = 106.28
20th percentile = 10-5.88
30th percentile = 10-5.61
40th percentile = 10-5.39
-->  50th percentile = 10-5.19 < 105
60th percentile = 10-5.00
70th percentile = 10-4.80
80th percentile = 10-4.58
90th percentile = 10-4.30
-->  95th percentile = 10-4.08 < 104
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The arithmetic average of this distribution of Incremental Lifetime Cancer Risk equals
10-5.24 = 5,75 « 1076 risk, well within the policy in the National Contingency Plan (US
EPA, 1990, NCP). Interestingly, the risk distribution from the ingestion pathway
dominates the risk distribution from the dermal pathway.

7.3.3 RBCG Based on Region V's Deterministic Assumptions

Using US EPA Region V's default exposure factors for RME conditions in Table 7, we
calculate that the deterministic RBCG for BaPeq in outdoor surface soils in the
residential neighborhoods near the industrial property equal 1.93 mg/kg BaPeq for
default RME conditions (see calculations in Table 12).

7.4 Interpretation and Application of the RBCGs

Under the Superfund statute, a RBCG is commonly calculated in the risk assessment
portion of a Remedial Investigation (the RI), while the engineering method(s) of
achieving that RBCG are developed in the Feasibility Study (the FS). In the Record of
Decision (ROD), the risk manager has considerable latitude in selecting the best risk
management option for a situation, taking into account all the goals, policies, desiderata,
and balancing criteria -- including background concentrations, engineering feasibility,
economics, and public acceptability -- in the National Contingency Plan (US EPA, 1990,
NCP).

No matter how the risk manager arrives at the risk management intervention during the
FS study and in the ROD, he or she must consider four fundamental issues that we
have not heretofore considered in this report:

e a RBCG for surface soils has the character of an Exposure Point
Concentration (EPC) for those surface soils,

* an EPC is defined by the US EPA as an arithmetic mean concentration over
the variability in a set of measurements (or often as the 95th percentile of the
uncertainty in the arithmetic mean concentration),

e -EPCs for soils must consider the two-dimensional spatial character of the
concentrations in surface soils before and after the proposed remediation,
and

* EPCs, as spatial average values, apply over a population of spatial
measurements where a population of people have exposures.
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Therefore, regardless of whether the RBCG is calculated using deterministic or
probabilistic methods, an RBCG is not the maximum allowable concentration of BaPeq
in surface soils at every single point in space, nor is it the maximum allowable
concentration of BaPeq experienced by any single person.

Even in a situation where the risk manager has chosen a point value as the RBCG for
surface soils, an EPC fully meeting that RBCG over an area will necessarily contain
some or many individual concentration measurements at spatial points that exceed the
point value of the RBCG. Similarly, in a population of people in an area that meets an
EPC achieving a point value RBCG, there will be some individuals who have higher
personal EPCs than do other individuals living or working in the same area. These facts
arise from the fundamental and inalienable two-dimensional spatial nature of
concentrations in surface soils. Succinctly, a RBCG does not apply to the maximum
single concentration in an area, nor does it apply to the maximally exposed person.

Alternately, in a situation where the risk manager has chosen a distribution as the
RBCG for surface soils, a distribution of EPCs fully meeting that distributional RBCG
may well contain some or many individual concentration measurements at spatial points
that seem to fall outside the distributional RBCG yet achieve the EPC.

Of course, based on US EPA's national policy, it is not appropriate to have a RBCG that
is lower than the natural or anthropogenic background concentrations for the same
compounds in the same media in a similar but unaffected area. Celotex and AlliedSignal
understand that any risk management decision based on treating one area to match the
background concentrations in a nearby but unaffected area (taken as the background
area) must consider both (i) matching the spatial pattems of concentrations in the
treatment area and the background area and (ii) matching the distributions of
concentrations in the treatment area and the background area.

For the neighborhoods surrounding the industrial property, it is premature to design or
even conceptualize the engineering methods to meet a particular risk management
decision -- whether that decision is couched in terms of meeting a distribution of
background concentrations or in terms of meeting a deterministic or probabilistic RBCG.
While we cannot resolve all these issues in this report, we can describe their operation
in broad brush.

25 QOctober 1996 , 48 Alceon ®



A.169.03 2800 S. Sacramento Site

7.4.1 Interpretation of a Deterministic RBCG

Since we have calculated the RBCG in the forward direction for RME and default RME
sets of assumptions, each of these altemate deterministic RBCGs has the character
and interpretation of an Exposure Point Concentration (EPC) for outdoor surface soils.
When interpreting a deterministic RBCG for outdoor surface soils, the US EPA
recommends calculating the EPC as the 95th-percentile upper confidence level (UCL) of
the uncertainty on the arithmetic mean concentration of variability experienced by the
exposed population US EPA, 1992, EPC. This EPC for outdoor surface soils is not the
maximum concentration in an area, and it is not calculated for each single property, one
at a time.

Therefore, to interpret or apply one of the RBCGs for outdoor surface soils in a
residential area near the industrial property, we would not consider just one property at
a time. In keeping with US EPA's guidance on developing EPCs for surface soils, we
would instead consider the 95th percentile upper confidence limit (UCL) on the
arithmetic mean of the surface soil concentrations averaged over the many properties
where each person has exposure (US EPA, 1992, EPC). Since no person has all of his
or her exposure on a single property, the EPC is properly calculated over many
propetties or over the whole neighborhood using activity-, time-, and distance-weighted
spatial statistics.

7.4.2 Interpretation of a Probabilistic RBCG

Since we have calculated this probabilistic RBCG in the forward direction, it also has the
character and interpretation of a distribution of Exposure Point Concentrations (EPCs)
for outdoor soils. Again, since no person has all of his or her exposure on a single
property, the EPC is properly calculated over many properties or over the whole
neighborhood using activity-, time-, and distance-weighted spatial statistics. To apply
this probabilistic cleanup target in practice, remedial engineers would compare this
distribution for the RBCG directly to the measured distribution of BaPeq concentrations
in the surface soils in the population of yards in the residential neighborhoods in the
Study Area near the industrial property. Two cases might arise:
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¢ First, the distribution of EPCs for measured BaPeq concentrations in surface
soils may have percentiles and a maximum that all fall below the
corresponding percentiles and below the maximum (100 mg/kg) for BaPeq in
the RBCG. In this case, no remedial action is necessary or appropriate.

¢ Second, the distribution of EPCs for measured BaPeq concentrations in
surface soils may have certain percentiles or a maximum that exceeds the
corresponding percentiles or maximum (100 mg/kg) for BaP in the RBCG. In
this case, some type of remediation may be considered.

If remediation is considered, there are two bedrock principles that should guide the
program:

e The "Worst First" Principle - As enunciated by Resources for the Future
(Finkel & Golding, 1994) for situations like this, the "Worst First" policy states
that the optimal public health policy includes two steps:

1. prioritize the problems and opportunities, and
2. focus resources on the worst of the problems first.

* The "Distribution Matching" Principle -- As stated in texts on decision science
(e.g., Clemen, 1991), it is both possible and desirable from both an efficiency
and equity points of view to undertake interventions to make the distribution of
field conditions match the distribution of the goal.

In practice, a remedial engineer might implement these two policies along these lines.
The engineer would implement this algorithm (or one like it) in an iterative fashion,
searching for an optimal solution, i.e., a solution that meets the risk management policy
in the most cost-effective way:

* First, the engineer would measure the BaPeq concentrations in the surface
soils in all the residential yards in the neighborhoods surrounding the
industrial property.

e Second, the engineer would compute the activity-, time-, and distance-
weighted spatial statistics and estimate the distribution of EPCs.

¢ Third, the engineer would compare the distribution of EPCs based on
measured concentrations to the distribution for the RBCG. If any percentiles
of the EPC distribution exceed the corresponding percentile or maximum of
the probabilistic RBCG, then the engineer would remediate the surface soils
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at one or more of the more highly contaminated properties (say, to a
concentration below the background distribution).

If the distribution of the EPCs based on the remaining measured
concentrations still does not meet the distribution for the RBCG, then the
engineer would remediate the surface soils at other highly contaminated
properties.

The engineer would continue to remediate the surface soils at the highly
contaminated properties remaining on the list until the distribution of EPCs
based on the remaining measured concentrations in the surface soils no
longer has percentiles that do not meet the percentiles of the RBCG
distribution.

When this algorithm stops, the distribution of EPCs in the neighborhoods will
be statistically smaller than the RBCG distribution, i.e., the distribution of
EPCs will meet all the constraints defined by the RBCG distribution.

An engineer would use a similar algorithm to achieve a cleanup in an area specified in
terms of achieving background concentrations.
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8. Uncertainty Analyses

8.1 General Discussion for All Deterministic and Probabilistic Calculations

As in any risk assessment, the factors considered in this report contain both variability
and uncertainty. As we use the terms, variability represents heterogeneity or diversity in
a well-characterized population, usually not reducible through further measurement or
study. Uncertainty represents ignorance -- or lack of perfect information -- about a
poorly-characterized phenomenon or model, sometimes reducible through further
measurement or study.

Appendix H examines uncertainties in the exposure and health effects data that are
relevant for assessing potential human health risks associated with exposure to
contaminants originating from the industrial property. Many of the key quantities
considered in the risk assessment are highly uncertain. For example, the following
factors have not been estimated with high precision or confidence:

* The gpatial distribution and extent of contamination from the industrial
property in various directions is not well known. Instead, it must be estimated
from soil sample data. (See discussion in Appendix B).

e The_ fraction of PAHs found at any specific location that arise from the
industrial property is uncertain. The problem of distinguishing between site-
related and "background” contamination arises, since the same contaminants
and approximate composition of PAHs found near the industrial property are
also found at distances remote enough to make association with the industrial
property implausible.

* The magnitudes and frequencies of individual exposures depend on individual
behaviors and on details of the yards (e.g., extent of vegetative cover as

opposed to rock and debris cover) that have not been quantified. Hence, the
actual magnitude of individual exposures is uncertain. Drive-by inspection of
yards in the vicinity of the industrial property suggests that they are dissimilar
in many respects (e.g., more rubble, less accessible soil useful for gardening
or recreation) compared to locations further from the industrial property. How
these local characteristics affect individual behaviors and exposures has not
been estimated. Similarly, local demographic characteristics (e.g., the ages,
occupations, recreational pattemns, etc.) of neighbors of the industrial property
have not been examined. Yet, these characteristics may affect the
magnitudes and frequencies of individual exposures to yard soils.

e The amounts of internal doses of reactive, potentially carcinogenic PAH
metabolites formed in humans at the exposure levels in question are not

25 October 1996 52 Alceon ®



A.169.03 2800 S. Sacramento Site

known. In particular, the relative amounts of internal doses formed in humans
compared to the amounts formed in animals under the experimental
conditions used to establish the carcinogenicity of PAHs such as B(a)P are
not known.

e The cancer potency of PAHSs, including B(a)P, at the concentrations found
near the industrial property is not known. Specifically, the relation between
carcinogenic potency of B(a)P at the high doses used in animal
carcinogenicity experiments and its potency at the much lower levels found in
the soil samples examined in this study is not known. In addition, the potency
of the PAH mixtures found in the soil samples is uncertain.

These uncertainties create a challenge for fair, efficient, health-protective risk
management. The actual human health risks posed by the industrial property are not
known. They would be costly to quantify with high precision and confidence, since doing
so would require resolving each of these sources of uncertainty. Yet, it is desirable to
avoid the two types of risk management errors most likely to occur in this case: failure to
adequately reduce site-related exposures, and failure to limit reductions to those that
significantly reduce actual human health risks. The purpose of the analyses reported in
this appendix and the next one is to reduce the probabilities of both types of errors by
introducing relevant information and findings from recently completed data analyses and
literature reviews. A suggested approach to risk management decision-making in the
presence of the uncertainties just listed is offered after some relevant facts, data, and
statistical results have been summarized.

Appendix B focuses on the first issue -- uncertainty about the épatial extent of
contamination near the industrial property. This issue can be addressed without
considering risk assessment questions and data: it rests solely on statistical analysis of
the soil sample data collected so far. Analysis of these data reveals the maximum
probable geographic extent of effects from the industrial property, and thus provides a
basis for bounding the geographic scope of the risk assessment without regard for risk
magnitudes. Appendix H presents the remaining sources of uncertainty and their
implications for risk management.

8.2 Semi-Quantitative Uncertainty Analysis for Deterministic Calculations

Both sets of deterministic calculations in this report include compounding conservatisms
in the sense that each calculation includes some conservative assumptions and some
median or average assumptions for exposure variables. When a calculation is done
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using only median values, the calculation does not contain compounding conservatisms
because medians are statistically neutral in multiplicative equations (Burmaster &
Bloomfield, 1996). However, calculations involving average values and other percentiles
greater than the 50th percentile do create compounding conservatisms in the risk
equation (Burmaster & Bloomfield, 1996)

8.2.1 Celotex's and AlliedSignal's RME Assumptions

In developing the inputs for the Celotex and AlliedSignal risk assessment, our general
approach to uncertainty has been to use an appropriate combination of health-protective
assumptions in estimating exposures, so that the cancer risks that we estimate are
based on a "high end exposure” to compensate for the uncertainties inherent in this
analysis (as defined in US EPA, 1992, Exposure). We believe that we have included
exposure assumptions that are reasonable for the Study Area and which consider
sensitive sub-populations, especially children and teens.

For both the ingestion pathway and the dermal pathway for children, teens, and adults,
we use a balanced combination of median values (which are statistically neutral),
average values (which introduce a moderate amount of statistical compounding), and
some conservative values (290th percentiles; which introduce a strong amount of
statistical compounding) in the exposure calculations.

Median Values (50th Percentiles)
Oral Absorption Adjustment Factor
Dermal Absorption Adjustment Factor
Exposure Frequencies Outdoors and Indoors

Average Values (between 50th and 85th Percentiles)
Transfer Coefficient to Indoor Dust
Body Weight
Skin Area
Fraction of Skin Exposed

Conservative Values (290th Percentiles)

Soil and Dust Ingestion Rates
Exposure Duration
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Soil and Dust Adherence Rates

The conservative factors alone -- not counting the compounding effects of the average
values -- compound to create a value of exposure above the 95th percentile of exposure
(US EPA, 1992). When this high value is multiplied by the 95th percentile for the Cancer
Slope Factor (from US EPA's IRIS database), the resulting estimate of risk has a still
higher percentile. In addition, we have included other conservatisms, for example, by
assuming that all exposures in the population begin at age 1 year.

822  US EPA Region V's Default RME Assumptions

On the other hand, the US EPA Region V has included many more strongly
compounding conservatisms, giving the results with their assumptions the character of a
"bounding estimate" (as defined in US EPA, 1992, Exposure).

For both the ingestion pathway and the dermal pathway for children, teens, and adults,
US EPA Region V uses a different combination of values, with fewer median values
(which are statistically neutral) and more conservative values (290th percentiles; which
introduce a strong amount of statistical compounding) in the exposure calculations.

Median Values (50th Percentiles)
None

Average Values (between 50th and 85th Percentiles)
Transfer Coefficient to Indoor Dust
Body Weight
Skin Area
Fraction of Skin Exposed

Conservative Values (290th percentile, some >95th percentile)
Oral Absorption Adjustment Factor
Dermal Absorption Adjustment Factor
Soil and Dust Ingestion Rates
Exposure Duration (=95th percentile)
Exposure Frequencies Outdoors and Indoors (295th percentile)
Soil and Dust Adherence Rates
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The conservative factors alone -- not counting the compounding effects of the average
values -- compound to create a value of exposure far above the 95th percentile of
exposure (US EPA, 1992). When this high value is multiplied by the 95th percentile for
the Cancer Slope Factor (from US EPA's IRIS database), the resulting estimate of risk
has a still higher percentile -- a value in the range of a "bounding estimate" (as defined
in US EPA, 1992, Exposure).
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9. Summary of the Risk Based Cleanup Goals for Surface Soils

Alceon performed a human health risk assessment that estimates different sets of risk-
based cleanup goals for the concentration of BaPeq in surface soils at homes near the
industrial property in Chicago. The RBCGs are based on acceptable exposure point
concentrations of carcinogenic PAHSs in soils in the vicinity of the industrial property.

Using deterministic methods -- techniques that are neither full-information nor state-of-
the-art -- Alceon estimates the neighborhood-specific risk-based cleanup goals for
surface soils outside the residential houses near the industrial property as follows:

Celotex's and AlliedSignal's RME Assumptions: 27.5 mg/kg BaPeq
US EPA Region V's Default RME Assumptions: 1.93 mg/kg BaPeq

Using probabilistic methods -- techniques that are both full-information and state-of-the-
art -- we see that an acceptable distribution of risk (one that meets both constraints
defining the acceptability of a distribution of total risk for both the ingestion and the
dermal pathways) occurs when the BaPeq concentration follows the distribution below.
Since this distribution of BaPeq concentrations causes a distribution of risk that
simultaneously meets (read, is less than) the two constraints defining the maximum
acceptable risk, it is, by definition, the cleanup target for BaP concentration in soils.

minimum = 0 mg/kg BaPeq

10th percentile < 6.4 mg/kg BaPeq

20th percentile < 9.5 mg/kg BaPeq
30th percentile < 12.8 mg/kg BaPeq
40th percentile < 16.4 mg/kg BaPeq
50th percentile < 20.8 mg/kg BaPeq
60th percentile < 26.1 mg/kg BaPeq
70th percentile < 33.3 mg/kg BaPeq
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80th percentile
90th percentile
95th percentile <

maximum <

IA

43.6

58.2

72.7

99.9

mg/kg BaPeq
mg/kg BaPeq
mg/kg BaPeq

mg/kg BaPeq

2800 S. Sacramento Site

This distribution, a lognormal distribution truncated at 100 mg/kg BaPeq, has an
arithmetic mean equal to 27.1 mg/kg BaPeq. In a statistical sense, this probabilistic
RBCG dominates the distribution of background concentrations discussed earlier
(Clemen, 1991; see also Appendices A and B). In a colloguial sense, this probabilistic
RBCG "is larger than" the distribution of background concentrations in Appendix A.
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10. Limitations

Alceon has used reasonable care in performing all of the analyses in this report. Alceon
has performed its services based upon risk assessment practices accepted at the time
they were performed.
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11. Abbreviations and Acronyms

AAF

ADD
ADD(day)
ADD(year)
ADD(life)
BaP
BaPeq
BW
cPAHs
CSF

CT

d
DL
E&E
EE/CA
EPC
ERM

NCP
ncPAHs
NOAEL
OSHA
PAHs
PHRED
PM10
PA
ppb
ppbv

m
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Absorption Adjustment Factor (oral or dermal)
Average Daily Dose

Average Daily Dose averaged over a day on which exposure occurs
Average Daily Dose averaged over a year on which exposure occurs

Average Daily Dose averaged over a lifetime of 75 years
Benzo(a)pyrene

Benzo(a)pyrene Toxic Equivalents

Body Weight

Carcinogenic Polycyclic Aromatic Hydrocarbons
Cancer Slope Factor

Central Tendency

day

Detection Limit

Ecology and Environment

Engineering Evaluation/Cost Analysis

Exposure Point Concentration

Environmental Resources Management

feet

gram

hour

Henry's Law Constant

Health Effects Assessment Summary Tables (US EPA)
High End Exposure

Human Heaith Evaluation Manual (US EPA)
Hazard Index

Intemational Agency for Research on Cancer
llinois Environmental Protection Agency
Incremental Lifetime Cancer Risk

Integrated Risk Information System (US EPA)
kilogram

Partition coefficient between water and organic carbon
Partition coefficient between water and octanol
Permeability Coefficient

liter

Maximum Contaminant Level

Maximum Contaminant Level Goal

meter

cubic meter

milligram

microgram

millimeter

mole

Molecular Weight

National Contingency Plan

NonCarcinogenic Polycyclic Aromatic Hydrocarbons
No Observed Adverse Effect Level

Occupational Safety and Health Administration
Polycyclic Aromatic Hydrocarbons

Public Health Risk Evaluation Database (US EPA)
Concentrations of Particulate Matter Less Than 10um in Diameter
Preliminary Assessment

parts per billion

parts per billion by volume
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Potentially Responsible Party
Risk-Based Cleanup Goals
Reference Dose

Reasonable Maximum Exposure
Solubility (agqueous)

Screening Site Inspection
Suppont Sampling Plan

transfer coefficient

US Environmental Protection Agency
vapor pressure

year
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Table 1
Study Chemicals, Acronyms, and Synonyms

CAS

Study Chemical  Synonym - Number

cPAHs benz(a)anthracene 56-55-3
benzo(a)pyrene 50-32-8

benzo(b)fluoranthene 205-99-2
benzo(k)fluoranthene 207-08-9

chrysene  1,2-benzophenanthrene 218-01-9

dibenz(a,h)anthracene 53-70-3
indeno(1,2,3-cd)pyrene  2,3-phenylenepyrene 193-39-5

25 Oct 96 Alceon ®.
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Table 2
Physical and Chemical Properties of the Study Chemicals

Molecular  Water * Vapor Henry's Koc Log 10

Study Chemical Weight  Solubility Pressure Law Kow
Constant
(g/mole) (mg/l) (mm Hg) (atmem3/mol) -) )

benz(a)anthracene 228 5.70E-03 2.20E-08 1.16E-06  1.38E+06 5.60
benzo(a)pyrene 252 1.20E-03 5.60E-09 1.55E-06 5.50E+06 6.06
benzo(b)fluoranthene 252 1.40E-02 5.00E-07 1.19E-05 5.50E+05 6.06
benzo(k)fluoranthene 252 4.30E-03 5.10E-07 3.94E-05 5.50E+05 6.06
chrysene 228 1.80E-03 6.30E-09 1.05E-06 2.00E+05 5.61
dibenz(a,h)anthracene 278 5.00E-04 1.00E-10 7.33E-08  3.30E+06 6.80
indeno(1,2,3-cd)pyrene 276 5.30E-04 1.00E-10 6.86E-08  1.60E+06 6.50

Note:

All information from US EPA, 1988, Public Health Risk Evaluation Database,
Office of Solid Waste & Emergency Response
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Table 3
Summary ot Key Toxicologic Properties of the Study Chemicals

Carcinogenic Toxicity by Ingestion

Toxic

Drinking Water Equivalency Cancer US EPA Species Cancer R n
Unit Risk Factor Slope Factor  Weight of Tested Type e o
Study Chemical (compared to Evidence f ot
(ng/l)-1 B(a)P) (mg / (kged))-1 e
benzo(a)anthracene 1.00E-01 7.30E-01 B2 mouse tumors by multiple routes a [1]
benzo(a)pyrene 2.10E-04 1.00E+00 7.30E+00 B2 many tumors by multiple routes a [t1]
benzo(b)fluoranthene 1.00E-01 7.30E-01 B2 mouse tumors by multiple routes a [1]
benzo(k)fluoranthene 1.00E-02 7.30E-02 B2 mouse lung implantation tumors a [1]
chrysene 1.00E-03 7.30E-03 B2 mouse carcinomas, lymphomas a [1]
indeno(1,2,3-c,d)pyrene 1.00E-01 7.30E-01 B2 mouse tumors from lung implants a [1]

Sources:

a US EPA, 1994, IRIS (May,1994-January,1995)
Notes:

[1] CSFs for non-B(a)P cPAH compunds were derived using the
following equation: TEF (cPAH) « CSF (B(a)P) =CSF (cPAH);
US EPA, 1993, PAH.

25 Oct 96 Page 1 Alceon ®.
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Table 3, continued
Summary of Key Toxicologic Properties of the Study Chemicals

Carcinogenic Toxicity by Inhalation

Inhalation Cancer US EPA Species Cancer R n

Unit Risk Slope Factor Weight of Tested Type e o

Study Chemical Evidence f ot
(1g/m3)-1 (mg / (kged))-1 e

benzo(a)anthracene 7.30E-01 B2 a [1]
benzo(a)pyrene 7.30E+00 B2 a [1]
benzo(b)fluoranthene 7.30E-01 B2 a (1]
benzo(k)fluoranthene 7.30E-02 B2 a [1]
chrysene 7.30E-03 B2 a [1]
indeno(1,2,3-c,d)pyrene 7.30E-01 B2 a [1]

25 Oct 96 Page 2 Alceon ®.
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Table 4
US EPA's Weight-of-Evidence Classification for Carcinogens

Animal Evidence

Sufficient Limited inadequate No Data  No Evidence
Human Evidence
Sufficient A A A A A
Limited B1 B1 B1 B1 B1
Inadequate B2 C D D D
No Data B2 ] D D E
No Evidence B2 ] D D E

Group A = Human Carcinogen (sufficient evidence from epidemiologic studies)

Group B1 = Probable Human Carcinogen (limited evidence from epidemiologic studies)

Group B2 = Probable Human Carcinogen (sufficient animal evidence in absence of adequate human data)
Group C = Possible Human Carcinogeri (limited animal evidence in absence of adequate human data)
Group D = Not Classifiable as to Human Carcinogenicity
Group E = Evidence of Non-Carcinogenicity for Humans

Source: US EPA, 51 FR 34000, September 24, 1986
Note: This classification scheme is currently under revision by the US EPA.
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Table 5
Estimated Order of Potential Potencies of Selected PAHs
Based on Mouse Skin Carcinogenesis

Compound  Relative Reference
Potency
benzo(a)pyrene 1.0
benz(a)anthracene 0.1 Bingham and Falk, 1969
benzo(b)fluoroanthene 0.1 Habs et al., 1980

benzo(k)fluoroanthene 0.01 Habs et al., 1980
chrysene 0.001 Wynder and Hoffmann, 1959
dibenz(a,h)anthracene 1.0 Wynder and Hoffmann, 1959

indeno(1,2,3-cd)pyrene 0.1 Habs et al., 1980;
Hoffmann and Wynder, 1966

Source:

Provisional Guidance for Quantitative Risk Assessment
of Polycyclic Aromatic Hydrocarbons

US EPA, 1993, EPA/600/R-93/089

25 Oct 96 ' Alceon ®.



T6.Celo.ExpScens.1V

A.169.03 - 2800 S. Sacramento

Table 6

Summary of Exposure Scenarios to Estimate Health Risks

Residents in Vicinity of Celotex Property

Variable
Conditions current / future current / future current / future
Type of receptor: child teenager adult
Age during exposure (yr): 1 through 6 7 through 17 >18
Average lifetime (yr): 70 70 70
Ingestion
Incidental Ingestion of soil Q Q Q
Inhalation
Inhalation of fugitive dust q q q
Iinhalation of soil vapors NE NE NE
Dermal
Dermal contact with soils Q Q Q
Notes:
Q = Exposure pathway gquantified
= Exposure pathway evaluated qualitatively
NE = Exposure pathway not evaluated
25 Oct 96 Alceon ®.
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Table 7

Detailed Exposure Scenarios to Estimate Health Risks

A 16903 - 2800 S Sacramento

Celotex's + AllledSignal's Point Values Distribution
Oral Ingestion Units Point Estmate AME (HEE) Source Distribution Support 95th Parcentile Medan
BaPeq - outdoor soil SoilBaPeq mg/kg A
BaPeq - indoor dust DustBaPeq mg/kg 8
Transter Coefficient TC - 042 [+ exp[N(-0 877,0 366)] (0. 1) 074 042
Absorption Adjustrent Factor - oral AAFo - 027 D B4{1,3,0 845,007} (0, 1) 066 027
Soil Ingestion Rate - child SIRc mg/d 200 E exp{N(4 13,0 8)} (0, =) 23233 62 18
Soil Ingestion Rate - teen SIRt mg/d 100 E exp{N(3 44,0 8)] (0, =) 116 48 3122
Soll Ingestion Rate - adult SIRa mg/d 100 E exp{N(3 44,0 8)] {0, o) 11635 3116
Conversion factor (mg->kg) CF kg/mg 1 00E-06 Constant
Conversion factor (m2->ecm2) CFs cm2/m2 1 00E+04 Constant
Body Weight - child BWc kg 164 F exp[N(2 69,0 33)} {0, =} 2535 1473
Body Weight - teen BWIt kg 449 F exp{N(3 75,0 37)} (0, =) 7818 4250
Body Weight - adult Bwa kg 70 G exp{N(4 263,0.206)} (0, ) 99 69 7103
Exposure Frequency - outdoor - child EFOc d 164 H Custom 246 164
Exposure Frequency - indoor - child EFIc d 186 H [simulated) 254 186
Exposure Frequency - outdoor - teen EFOc d 177 H Custom 264 177
Exposure Frequency - Indoor - teen EFlc d 173 H {simulated} 245 173
Exposure Frequency - outdoor - adult EFOc d 167 H Custom 246 167
Exposure Frequency - indoor - aduit EFic d 183 H [stmutated} 255 183
Days per Year dpy diyr 350 | Point Estimate
Exposure Duration - child EDc¢ yr (] J [simulated] 6 32
Exposure Duration - teen EDt yr 1 J [simulated] 11 02
Exposure Duration - adult EDa yr 1 J [stmulated) 7 084 01
Years in Ldetime Lifetime yr 70 K Point Estimate
Dermal Contact Units Point Estmate RAME (HEE) Source Distnibution Support  95th Percentile Median
BaPeq - outdoor soll SoilBaPeq mg/kg A
BaPeq - indoor dust DustBaPeq mg/kg B
Transter Coefficient TC - 042 o] exp[N(-0 877,0 366)) 0. 1) 074 o4
Absorption Adjustment Factor - dermal AAFd - 002 D b {0, =) 007 002
Sotl Adherence Rate SAR mg/(cm2ed) 1 L exp{N{-1 71,1 01)} {0, o) 0952 0181
Dust Adherence Rate DAR  mg/(cm2+d) 02 M exp{N(-3 1,101)] (0, =) 024 005
Skin Surface Area - child SAc m2 073 N {simulated]) 0941 0629
Skin Surface Area - teen SAt m2 15 N [simulated)] 1901 1338
Sian Surface Area - adult SAa m2 2 N [simulated) 2139 1808
Fraction of Skin Area Exposed Fre - 025 (o] Point Estimate
Conversion factor (mg->kg) CF kg/mg 1 00E-06 Constant
Conversion factor (m2->cm2) CFs cm2/m2 1 00E+04 Constant
Body Weight - child BWc kg 164 F exp{N(2 69,0 33)) (0, =) 2535 1473
Body Weight - teen BWL kg 449 F exp{N(3 75,0 37)) (0, ) 78 18 4250
Body Weight - adult BWa kg 70 G exp[N(4 263,0 206)) (0, =) 99 69 7103
Exposure Frequency - outdoor - child EFOc d 164 H Custom 246 164
Exposure Frequency - indoor - child EFic d 188 H [simulated] 254 186
Exposure Frequency - outdoor - teen EFOt d 177 H Custom 264 177
Exposure Frequency - indoor - teen EFRt d 173 H {simulated] 245 173
Exposure Frequency - outdoor - aduit EFOa d 167 H Custom 246 167
Exposure Frequency - indoor - adult EFla d 183 H {simulated]) 255 183
Days per Year dpy diyr 350 [} Point Estimate
Exposure Duration - child EDc yr 6 J [simulated] 6 32
Exposure Duration - teen EDt yr 11 J [simulated) 11 02
Exposure Duration - adult EDa yr 1 J [simulated] 7 084 01
Years in Liletime Lifetime yr 70 K Point Estmate

Page 1
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Detailed Exposure Scenarios to Estimate Health Risks

Table 7, continued

US EPA Reglon V's Point Values

Oral Inggstlon Units Point Estimate default RME Source
BaPeq - outdoor soil SoilBaPeq mg/kg AA
BaPeq - indoor dust DustBaPeq mg/kg AA
Transfer Coefficlent TC - 042 AA
Absorption Adjustment Factor - oral AAFo - 09 AA
Soil Ingestion Rate - child SIRc mg/d 200 AA
Soil Ingestion Rate - teen SIRt mg/d 200 AA
Soil Ingestion Rate - adult SIRa mg/d 100 AA
Conversion factor (mg->kg) CF kg/mg 1 00E-08 AA
Conversion factor (m2->em2) CFs om2/m2 1 00E+04 AA
Body Weight - child BWc kg 15 AA
Body Weight - teen Bwt kg 45 AA
Body Weight - aduit BWa kg 70 AA
Exposure Frequency - outdoor - child EFOc d 350 AA
Exposure Frequency - indoor - child EFic d (¢} AA
Exposure Frequency - outdoor - teen EFOc d 350 AA
Exposure Frequency - indoor - teen EFlc d 0 AA
Exposure Frequency - outdoor - adult EFOc d 350 AA
Exposure Frequency - mdoor - adult EFic d 0 AA
Days per Year dpy diyr 385 AA
Exposure Duration - child EDc yr ] AA
Exposure Duration - teen EDt yr 11 AA
Exposure Duration - adult EDa yr 13 AA
Years in Lifetime Lifetme yr 70 AA
Dermal Contact Units Point Estimate _default AME Source
BaPeq - outdoor soil SoilBaPeq mg/kg AA
BaPeq - indoor dust DustBaPeq mg/kg AA
Transfer Coetficient TC . na AA
Absorption Adjustment Factor - dermat AAFd - 015 AA
Soil Adherence Rate SAR mg/(cm2ed) 1 AA
Dust Adherence Rate DAR  mg/{cm2ed) na AA
Skin Surface Area - child SAc m2 073 AA
Skin Surface Area - teen SAt m2 15 AA
Skin Surface Area - adult SAa m2 2 AA
Fraction of Skin Area Exposed Frc - 025 AA
Conversion factor (mg->kg) CF kg/mg 1 00E-06 AA
Conversion factor (m2->cm2) CFs cm2/m2 1 00E+04 AA
Body Weight - child BWe kg 15 AA
Body Weight - teen BWt kg 45 AA
Body Wesght - adutt BWa kg 70 AA
Exposure Frequency - outdoor - child EFOc d 350 AA
Exposure Frequency - indoor - child EFlc d 0 AA
Exposure Frequency - outdoor - teen EFOt d 350 AA
Exposure Frequency - indoor - teen EFlt d [} AA
Exposure Frequency - outdoor - adult EFOa d 350 AA
Exposure Frequency - indoor - adult EFla d [} AA
Days per Year dpy diyr 385 AA
Exposure Duration - child EDc yr ] AA
Expasure Duration - teen EDt yr 7" AA
Exposure Duration - adult EDa yr 13 AA
Years in Litetime Lifetime yr 70 AA

Page 2
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Table 7, continued

Detailed Exposure Scenarios to Estimate Health Risks

Source
e

$ OzErxe-zIOTMMODOW®

Ecology & Environment's Report

(the goal of the calculations)

calculated from transfer coefficient

Trowbndge & Burmaster, 1996

Magee et al, 1996

Thompson & Burmaster, 1991, UD EPA, 1995, EFH2, LaGoy,
Burmaster et al, 1994, Burmaster & Crouch, 1996
Brainard & Burmaster, 1992, US EPA, 1995, EFH2
Alceon - see Appendix XXX

US EPA, 1989, HHEM

Alceon - see Appendix XXX

US EPA, 19889, HHEM

US EPA, 1992, Dermal

Kissel et al, 1996, US EPA, 1992, Dermal

Murray & Burmaster, 1992, US EPA, 1995, EFH2
Ecology & Environment, October 1995

Ecology & Environment, October 1995
and di lons with Staff Members of US EPA's Region V

Page 3
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T8.Celo.Midway.1V A.169.03 - 2800 S. Sacramento

Table 8
Exposure Frequency as a Function of Temperature

32 degF 40 degF 50 degF 60 degF 70 degF

N days at or above 282 246 196 143 86
N days below 83 119 169 222 279

child 0.00 0.05 0.20 0.70 1.00

teen 0.00 0.10 0.30 0.85 1.00

adult 0.00 0.05 0.25 0.70 1.00

checksum 365 365 365 365 365

25 Oct 96 Alceon ®.



Dose Formulae A.169.03 - 2800 S. Sacramento Site

Table 9
Formulae Used to Estimate Doses and Risk

1. Formula for Average Daily Dose tor a Day of Exposure - ADD (day) - Ingestion of Soil or Dust

EPC (%‘L)- IngR (52 ) « CFim (106 %g—) « OAAF

ADD (day) (d- kged ) = BW (k)
where:

ADD (day) = Average Daily Dose for a Day of Exposure via Ingestion
EPC = Acceptable Exposure Point Concentration of Study Chemical in Soil or Dust
IngR = Average Incidental Ingestion Rate
CFkm = Conversion Factor for kg to mg
OAAF = Oral Absorption Adjustment Factor
BW = Body Weight

2. Formula for Average Daily Dose for a Day of Exposure - ADD (day) - Dermal Contact with Soil or Dust

EPc( )+ AdhR ( -5 ) * SA (m?) « FracExp * CFim (106 ) ¢ CFem (104 Cm) « dAAF

ADD (d) (4g g kg d ) = BW (kg) .
where:
ADD (d) = Average Daily Dose for a Day of Exposure via Dermal Contact
EPC = Average Concentration of Study Chemical in Soil or Dust
AdhR = Adherence Rate of Soil on Skin
SA = Surface Area of Body
FracExp = Fraction of Body Exposed
CFkm = Conversion Factor for kg to mg
CFem = Conversion Factor for cm2 to m2
dAAF = Dermal Absorption Adjustment Factor
BW = Body Weight
25 Oct 1996 Page 1 Alceon ®



Dose Formulae

3. Formuia for Average Daily Dose for a Lifetime of Exposure - ADD (life)

ADD (life) ( kg,c,) ADD (day)(kg d) EF( )Cde(—1yr—)

365d
where:
ADD (life) = Average Daily Dose for a Lifetime of Exposure
ADD (day) = Average Daily Dose for a Day of Exposure
EF = Frequency of Exposure in Life Stage
Cde = Conversion Factor for d to yr

4. Formula for Total Average Daily Dose - ADD (total)

ADD (total) (1095 ) = (DD (ite) (122 ) *ED(Y) ) + (g )
g g etime

where:
ADD (total) = Total Average Daily Dose
ADD (life) = Average Daily Dose for a Lifetime of Exposure
ED = Duration of Exposure in Life Stage
CFdy = Conversion Factor for d to yr
Lifetime = Years in Lifetime
25 Oct 1996 ‘ Page 2
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Varlable

BaPeq - outdoor soil
Transfer Coetficient
BaPeq - indoor dust

Soil Ingestion Rate

Absorption Adjustment Factor - oral
Average Daity Dose (day) - ora! -outdoor
Average Daily Dose (day) - oral - indoor

Soil Adherence Rate

Dust Adherence Rate

Skin Surface Area

Fraction of Skin Area Exposed - outdoor
Fraction of Skin Area Exposed - indoor
Absorption Adjustment Factor - dermal

Average Daily Dose (day) - dermal - outdoor DADDOc
Average Daily Dose (day) - dermal - indoor  DADDIc

Body Weight
Ccaversion factor (mg->kg)
Conversion factor (m2->cm2)

Number of Days near Celotex
Exposure Frequency - outdoor
Exposure Frequency - indoor
Exposure Duration

Days per Year

Years in Lifetime
Averaging ime

Average Dally Dose(lifetime) - oral
Total Average Daily Dose - oral

Average Daily Dose{lifetime) - dermal
Total Average Dally Dose - dermal

Cancer Slope Factor - ingestion

Incremental Lifetime Cancer Risk - oral

Incremental Lifetime Cancer Risk - dermal

Incremental Lifetime Cancer Risk - Total

25 Oct 96

A 16903 - 2800 S Sacramento

Table 10

Child Toen Adutt Units

age: 1 throu age: 7 throu age: 18 thro

SollBaPeq [=SoiiBaPeq |soiBaPeq [=SoilBaPeq |SciBaPeq (275 |mgig

TC =TC TC =TC TC 042 dimensionless

DustBaPeq =DustBaPeq DustBaPeq =DustBaPeq DustBaPeq =TC*SoilBaPeq

SIRc =IF(M13=0,013,P13) SIRt =iF(M14=0,014,P14) SIRa =IF(M15=0,015,P15) mg/day

AAFo =AAFo AAFo =AAFo AAFo =iF{M12=0,012,P12) dimenstonless

OADDOc  =SoilBaPeq*AAFo"SIRc*CF/BWc OADDOt  =SoilBaPeq"AAFo*SIRt*CF/BW! OADDOa  =SoilBaPeqAAFo*SIRa*CF/BWa mg/(kg=day)

OADDIc =DustBaPeq"AAFo*SIRc*CF/BWc OADDIt =DustBaPeq’AAFo*SIRt"CF/BWt OADDIla =DustBaPeq*AAFo°SIRa*CF/BWa mg/{kg=day)

SAR =SAR SAR =SAR SAR =IF(M39=0,039,P39) mg/{cm2ed)

DAR =DAR DAR =DAR DAR =IF(M40=0,040,P40) mg/(cm2+d)

SAc =IF(M41=0,041,P41) SAl =IF(M42=0,042,P42) SAa =IF(M43=0,043,P43) cm2

FreOc 025 FreOt 025 FrcOa 025 -

Frelc 025 Frelt 025 Frcla 025 -

AAFd =AAFd AAFd =AAFd AAFd =IF(M38=0,038,P38) dimensionless
=(SoilBaPeq*AAFd*SAR"SAc*FrcOc*CF*CFs)/BWc DADDOt =(SoilBaPeq*AAFd*SAR*SAt'FrcOt*'CF*CFs)/BWt DADDOa  =(SoilBaPeq"AAFd*SAR*SAa"FrcOa*CF*CFsyBWa mg/(kgeday)
=(DustBaPeq*AAFd*DAR‘SAc*Frclc*CF*CFa)/BWc DADDIt =(DustBaPeq*AAFd‘DAR*SAt*Frclt*CF*CFs)/BWt DADDIa =(DustBaPeq"AAFd°DAR SAaFrcla°CF*CFs)/BWa mg/(kgeday)

BwWce =IF(M18=0,018,P18) BwWt =IF(M19=0,018,P19) BWa =IF(M20=0,020,P20) kg

CF =CF CF =CF CF 0 000001 kg/mg

CFs =CFs CFs =CFs CFs 10000 cm2/m2

DayCc 350 DayCt 350 DayCa 350 daylyr

EFOc 164 EFOt 177 EFOa 167 daylyr

EFic =DayCc-EFOc EFit =DayCt-EFOt EFla =DayCa-EFOa daylyr

EDc =IF(M28=0,028,P28) EDt =IF(M29=0,029,P29) EDa =IF(M30=0,030,P30) yr

dpy =dpy dpy =dpy dpy 365 daylyr

Lifetme =Lifetime Lifetime =Lifetime Lifetime 70 yr

AT =AT AT AT AT =Lifetime*dpy day

OADDIc =(OADDOCc*EFOc+OADDIc"EFic)/dpy OADDH =(OADDOt"EFOt+OADDIVEFIty/dpy OADDla =(OADDOa’EFCa+0ADDIla*EFla)/dpy mg/(kgeday)

OADD =(EDc*OADDIc+ED1*OADDI+EDa"OADDIa)}Lfetime mg/(kgeday)

DADDIc =(DADDOCc*EFOc+DADDIc*EFic)/dpy DADDH =(DADDOt*EFOt+DADDIt"EFt)/dpy DADDla =(DADDOa*EFOa+DADDIla"EFla)/dpy mg/(kg=day)

DADD =(EDc*DADDIc+EDt*DADDIt+EDa*DADDIa)/Ldetime mg/(kgeday)
CSF =CSF CSF =CSF CSF 73 (kgeday)/mg

ILCRo |=OADD*CSF

ILCRd |=DADD*CSF

ILCR [ZILCRo+ILCRd

Page 1
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Oral ingestion

BaPeq - outdoor soil

BaPeq - Indoor dust

Transfer Coetficient

Absorption Adjustment Factor - oral
Soil Ingestion Rate - child

Soll Ingestion Rate - teen

Soll Ingestion Rate - adult
Conversion factor (mg->kg)
Converslon factor (m2->em2)

Body Welght - child

Body Weight - teen i

Body Weight - adult

Exposure Frequency - outdoor - child
Exposure Frequency - indoor - child

SoilBaPeq

DustBaPeq
TC
AAFo
SIRc
SIRt
SIRa
CF
CFs
BWc
BWt
BWa
EFOc
EFlc

Exposure Frequency - outdoor - teen  EFOc
Exposure Frequency - indoor - teen EFlc
Exposure Frequency - outdoor - adult EFOc
Exposure Frequency - indoor - aduft EFic
Days per Year dpy
Exposure Duration - child EDc
Exposure Duration - teen EDt
Exposure Duration - adult EDa
Years in Lifetme Lifetime
Dermal Contact

BaPeq - outdoor soil SoilBaPeq
BaPeq - indoor dust DustBaPeq
Transfer Coefficient TC
Absorption Adjustment Factor - dermal  AAFd
Soil Adherence Rate SAR
Dust Adherence Rate DAR
Skin Surface Area - child SAc
Skin Surlace Area - teen SAt
Skin Surface Area - adult SAa
Fraction of Skin Area Exposed Frc
Conversion factor (mg->kg) CF
Conversion factor (m2->cm2) CFs
Body Weight - child BWwe
Body Weight - teen BwWt
Body Weight - adult BWwa
Exposure Frequency - outdoor - chid  EFOc
Exposure Frequency - indoor - child EFic
Exposure Frequency - outdoor - teen  EFOt
Exposure Frequency - indoor - teen EFit
Exposure Frequency - outdoor - adult EFOa
Exposure Frequency - indoor - adut  EFla
Days per Year dpy
Exposure Duration - child EDc
Exposure Duration - teen EDt
Exposure Duration - adult EDa
Years in Lifetime Lifetime

=M13
=M14

=M18
=M19

=M21
=M22
=M23
=M24
=M25

=M28
=M29

=M12

=M41
=M42

=M18
=M19
=M20

=M22
=M23
=M24
=M25
=M26

=M28
=M29
=M30

Table 10

Page 2

cT RME
Toggle 0 Toggle 1
Median Point Estimate Units
mg/kg
mg/kg
0.42 0.42 0.42 -
0.27 0.27 -
62 200 mg/d
a1 100 mg/d
3 100 mg/d
0 000001 kg/mg
10000 cm2/m2
147 164 kg
425 449 kg
n 70 kg
164 164 d
186 =350-P21 d
177 177 d
173 =350-P23 d
167 167 d
183 =350-P25 d
350 dy
32 6 y
02 o y
01 y
70 y
Medien  06th-peroentie Point Estimate Units
mg/kg
mg/kg
0.42 0.42 0.42 -
0.02 0.02 -
o181 1 mg/(cm2ed)
0045 02 mg/(cm2ed)
063 073 m2
134 15 m2
18 2 m2
025 -
0 000001 kg/mg
10000 cm2/m2
147 164 kg
425 449 kg
7 70 kg
164 164 d
186 =350-P50 d
177 177 d
173 =350-P52 d
167 167 d
183 =350-P54 d
350 dy
32 6 y
02 1 y
01 1 y
70 y

A 169 03 - 2800 S. Sacramento
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Variable

BaPeq - outdoor soil
Transter Coefficient
BaPeq - indoor dust

Soll Ingestion Rate

Absorption Adjustment Factor - oral
Average Daily Dose (day) - oral -outdoor
Average Daily Dose (day) - oral - indoor

Soil Adherence Rate

Dust Adherence Rate

Skin Surface Area

Fraction of Skin Area Exposed - outdoor
Fraction of Skin Area Exposed - indoor
Absorption Adj 1t Factor - d |
Average Daily Dose (day) - dermal - outdoor
Average Daily Dose (day) - dermal - indoor

Body Weight
Convaersion factor (mg->kg)
Conversion factor (m2->cm2)

Number of Days near Celotex
Exposure Frequency - outdoor
Exposure Frequency - indoor
Exposure Duration

Days per Year

Years in Lifetime
Averaging tme

Average Daily Dose(lifetime) - oral
Totaj Average Daily Dose - oral

Average Daily Dose(lifetime) - dermal
Total Average Daily Dose - dermal

Cancer Slope Factor - ingestion
Incremental Lietime Cancer Risk - oral

Incremental Lifetime Cancer Risk - dermal

Incremental Lifetime Cancer Risk - Total

Table 11

Estimated Deterministic RBCG
RME (HEE) - Celotex + AliedSignal

A 16903 - 2800 S Sacramento

Child Teon Aduft Units
age: 1 through 6 yr age: 7 through 17 yr age: 18 through 70 yr
SollBaPeq 27500 SollBaPeq| 27500 SoiBaPeq] 27 500] mg/kg BaPeq
TC 0420 TC 0420 TC 0420 dimensionless
DustBaPeq 11 550 DustBaPeq 11 550 DustBaPeq 11 550
SiRc 200 000 SIRt 100 000 SIRa 100 000 mg/day
AAFo 0270 AAFo 0270 AAFo 0270 dimensionless
OADDOc 9 05E-05 OADDOt 1 65E-05 OADDOa 1 06E-05 mg/(kg+day)
OADDIc 3 B0E-05 OADDIt 6 95E-06 OADDla 4 46E-06 mg/(kgeday)
SAR 1000 SAR 1000 SAR 1000 mg/(cm2ed)
DAR 0200 DAR 0200 DAR 0200 mg/(cm2ed)
SAc 0730 SAt 1 500 SAa 2000 cm2
FreOc 0250 FreOt 0250 FrcOa 0250 -
Frelc 0250 Frelt 0250 Frcla 0250 -
AAFd 0020 AAFd 0020 AAFd 0020 dimensionless
DADDO¢ 6 12E-05 DADDOt 4 59E-05 DADDOa 3 93E-05 mg/(kgeday)
DADDIc 5 14E-08 DADDMIt 3 86E-08 DADDIla 3 30E-06 my/(kgeday)
BWc 16.400 BWt 44 900 Bwa 70 000 kg
CF 1 00E-06 CF 1 00E-08 CF 1 00E-06 kg/mg
CFs 1 00E+04 CFs 1 00E+04 CFs 1 00E+04 cm2/m2
DayCe 350 DayCt 350 DayCa 350 day/yr
EFOc 164 EFOt 177 EFOa 167 day/yr
EFlc 186 EFlt 173 EFla 183 day/yr
EDc 6 000 EDt 11 000 EDa 1000 yr
dpy 365 dpy 365 dpy 365 day/yr
Litetime 70 Lifetime 70 Lifetime 70 yr
AT 25550 AT 25550 AT 25550 day
OADDIc 6 01E-05 OADDR 1 13E-05 OADDIa 7 09E-06 mg/(kgeday)
OADD 7 03E-08 mg/(kgeday)
DADDk 301E-05 DADDIt 2 41E-05 DADDIa 1 96E-05 mg/(kgeday)
DADD 6 65E-06 mg/(kgeday)
CSF 7.30 CSF 730 CSF 730 (kgeday)/mg
ICRo| 5 13E-0§|
ILCRd 4 85E-05
ILCR| 9 98E-05

Page 1
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25 0ct 96

Table 11
Estimated Deterministic RBCG
RME (HEE) - Celotex + AlliedSignal

Page 2

cT HEE

Toggle 0 Toggle 1
Oral Ingestion —_Toggle Median 95th-pereentie Polnt Estimate Units
BaPeq - outdoor soi SollBaPeq mg/kg
BaPeq - indoor dust DustBaPeq mg/kg
Transfer Coefficient TC 0.42 0.42 0.42 -
Absorption Adjustment Factor - oral AAFo 0.27 0.27 -
Soll Ingestion Rate - child SIRc 62 200 mg/d
*Soil Ingestion Rate - teen SIRt 1 kil 100 mg/d
Sail Ingestion Rate - aduit SIRa 1 AN 100 mg/d
Conversion factor {(mg->kg) CF 1 00E-06 kg/mg
Conversion factor (m2->cm2) CFs 1 00E+04 cm2/m2
Body Weight - child we [ 1 147 164 kg
Body Weight - teen BWt 1 425 449 kg
Body Weight - adult = Bwa 1 n 70 kg
Exposure Frequency - outdoor - child EFoc [ 1} 164 164 d
Exposure Frequency - indoor - child ~ EFlc 1 186 186 d
Exposure Frequency - outdoor - taen . EFOc 1 177 177 d
Exposure Frequency - iIndoor - teen <, * « ! EFic 1 173 173 d
Exposure Frequency - outdoor - adult ! EFOc 1 167 167 d
Exposure Frequency - indoor - adult EFlc 1 183 183 d
Days per Year ' dpy 350 dy
Exposure Duraton - child : T eoc [ 1) 32 6 y
Exposure Duration - teen - [ EDt 1 02 1 ; y
Exposure Duration - adult . . L . EDa 1 01 1 y
Years in Lifetime : Lietime 70 y
Demal Contact - Median 06th-peroenite Point Estmate Units
BaPeq - outdoor soil v SollBaPeq mg/kg
BaPeq - indoor dust DustBaPeq mg/kg
Transter Coefficient TC 0.42 0.42 0.42 -
Absorption Adj 1t Factor - AAFd 1 0.02 0.02 -
Soil Adherence Rate ssR [ 0181 1 mg/(cm2ed)
Dust Adherence Rate DAR 1 0045 02 mg/(cm2«d)
Skin Surface Area - child sae [ 1) 063 073 m2
Skin Surface Area - teen SAt 1 134 15 m2
Skin Surface Area - adult SAa 1 18 2 m2
Fraction of Skin Area Exposed Frc 025 -
Conversion factor (mg->kg) CF 1 00E-06 kg/mg
Conversion factor (m2->cm2) CFs 1 00E+04 em2/m2
Body Weight - child BWc 1 147 164 kg
Body Weight - teen BwWt 1 42 50 449 kg
Body Weight - adult Bwa 1 " 70 kg
Exposure Frequency - outdoor - child EFOc 1 164 164 d
Exposure Frequency - indoor - child EFic 1 186 186 d
Exposure Frequency - outdoor - teen EFOt 1 177 177 d
Exposure Frequency - indoor - teen EFIt 1 173 173 d
Exposure Frequency - outdoor - adult EFOa 1 167 167 d
Exposure Frequency - indoor - adult EFla 1 183 183 d
Days per Year dpy 350 dfy
Exposure Duration - child EDec 1 32 6 y
Exposure Duration - teen EDt 1 02 1 y
Exposure Duration - adult EDa 1 o1 1 y
Years in Lifetime Lifetime 70 y

A 16903 -2800 S Sacramento

Alceon ®



T12 Det 5 EAE RMEY

Estimated Deterministic RBCG
Default RME - US EPA Region V

25 Oct 96

Variable

BaPeq - outdoor soit

Transfer Coefficient
BaPeq - indoor dust

Soil Ingestion Rate

Absorption Adjustment Factor - orat
Average Daily Dose (day) - oral -outdoor
Average Daily Dose (day) - oral - indoor

Soil Adherence Rate

Dust Adherence Rate

Skin Surface Area

Fraction of Skin Area Exposed - outdoor
Fraction of Skin Area Exposed - indoor
Absorption Adjustment Factor - dermal
Average Daity Dose {day) - dermal - outdoor
Average Daily Dose (day) - dermal - indoor

Body Weight
Conversion factor (mg->kg)
Conversion factor (m2->cm2)

Number of Days near Celotex
Exposure Frequency - outdoor
Exposure Frequency - mdoor

Exposure Duration
Days per Year

Years In Lifetime
Averaging time

A ge Daily Dose(| ne) - oral
Total Average Daily Dose - oral

Average Daily Dose(ifetime) - dermal
Total Average Dally Dose - dermal

Cancer Slope Factor - ingestion
Incremental Lifetrne Cancer Risk - oral

Incrementat Lifettne Cancer Risk - dermal

Incremental Lifetime Cancer Risk - Total

Child
age: 1 through 6 yr

Teen

age: 7 through 17 yr

Adult

age: 18 through 70 yr

A 16903 - 2800 S Sacramento

Units

N E—

TC
DustBaPeq

SIRc
AAFo
OADDOc
OADDIc

SAR
DAR
SAc
FrcOc
Frcic
AAFd
DADDOc
DADDic

BWc

CFs

DayCc
EFOc
EFlc
EDc

Lifetime

AT

OADDIc

DADDKk

CSF

0420
oan

200 000
0900

2 32E-05
9 73E-08

1000
1.000
0.730
0250
0250
0.150
3 52E-05
1 48E-05

15 000
1 00E-08
1 00E+04

350
350

6 000

365

25550

2 22E-05

3 38E-05

730

S T
TC 0420
DustBaPeq 0811
SiRt 200 000
AAFo 0900
OADDOt 7.72E-08
OADDIt 3 24E-06
SAR 1000
DAR 1000
SAl 1 500
FrcOt 0250
Freht 0250
AAFd 0150
DADDOt 2 41E-05
DADDMIt 101E-05
Bwt 45 000
CF 1 00E-06
CFs 1 00E+04
DayCt 350
EFOt 350
EFiIt 0
EDt 11 000
dpy 365
Lifetime 70
AT 25550
OADDhR 7 40E-08
DADDR 2 31E-05
CSF 730
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N —

TC
DustBaPeq

SIRa
AAFo
OADDOa
OADDIa

SAR
DAR
SAa
FrcOa
Frcla
AAFd
DADDOQa
DADDIla

Bwa
CF
CFs

DayCa
EFOa
EFla
EDa
dpy

Lifetime
AT

OADDla
OADD

DADDIa
DADD

CSF

ILCRo

ILCRd|

ILCR

0420
0811

100 000
0 900

2 48E-08
1 04E-06

1000
1000
2.000
0250
0250
0150
2 07E-05
8 69E-06

70 000
1 00E-06
1 00E+04

350
350

0

13 000
365

70
25550

2 38E-06
351E-08

1 98E-05
1 02E-05

730

| 2 56E-08
7 46E-05

mg/kg BaPeq
dimensionless

mg/day
dimensionless
mg/(kgeday)
mg/(kgeday)

mg/(cm2+d)
mg/(cm2ed)
cm2

dimensionless

mg/(kgeday)
mg/(kgeday)

kg
kg/mg
ecm2/m2

dayfyr
dayfyr
day/yr

yr
daylyr

yr
day

mg/(kg=day)
mg/(kgeday)

mg/(kg=day)
mg/(kgeday)

(kgeday)/mg !
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A 16903 - 2800 S Sacramento

Table 12
Estimated Deterministic RBCG
Default RME - US EPA Region V
cT RME
Toggle 0 Toggle 1
Oral Ingestion Tﬂle Medan 05th-percentilo Point Estimate Units
BaPeq - outdoor soil SoliBaPeq mg/kg
BaPaq - indoor dust DustBaPeq mg/kg
Transfer Coefficient TC 042 042 0.42 -
Absorption Adjustment Factor - oral AAFo 09 09 -
Soil Ingestion Rate - child SIRc 100 200 mg/d
Soll Ingestion Rate - teen SIRt 1 100 200 mg/d
Soil ingestion Rate - adult SIRa 1 50 100 mg/d
Conversion factor (mg->kg) CF 1 00E-06 kg/mg
Conversion tactor {(m2->cm2) CFs 1 00E+04 cm2/m2
Body Weight - child ! Bwe [ 1 15 15 kg
Body Weight - teen Bwt 1 45 45 kg
Body Weight - adutt , Bwa 1 70 70 kg
Exposure Frequency - outdoor --child , eFoc [_____1) 260 350 d
Exposure Frequency - indoor - child | " , EFlc 1 90 (] d
Exposure Frequency - outdoor - teen N . ' EFOc 1 260 350 d
Exposure Frequency - Indoor - teen L ' EFlc 1 90 [\} d
Exposure Frequency - outdoor - adult vl 'EFOc 1 260 350 d
Exposure Frequency - indoor - adu e EFic 1 20 0 d
Days per Year s L , dpy 365 385 350 dy
Exposure Duration - child : 3 " EDe l:l 6 6 y
Exposure Duration - teen S . -~ EDt 1 2 1 y
Exposure Duration - adult i . EDa 1 9 13 y
Years in Lifettme . Lifetime 70 70 70 y
Dermal Contact ) CT RME Point Estimate Units
BaPeq - outdoor soil " SoilBaPeq mg/kg
BaPeq - indoor dust .l' DustBaPeq mg/kg
Transfer Coefficient TC 042 042 0.42 -
Absorption Adj 1t Factor - d } AAFd 1 015 015 -
Soil Adherence Rate ssR [ ) 02 1 mg/(cma2ed)
Dust Adherence Rate DAR 1 02 1 mg/(cm2ed)
Skn Surface Area - child sae [ 9 073 073 m2
Skin Surface Area - teen SAt 1 15 15 m2
Skin Surface Area - adult SAa 1 2 2 m2
Fraction of Skin Area Exposed Frc 025 -
Conversion factor (mg->kg) CF 1 00E-06 kg/mg
Conversion factor (m2->cm2) CFs 1 00E+04 cm2/m2
Body Weight - child Bwc 1 15 15 kg
Body Weight - teen BW! 1 45 45 kg
Body Weight - adult BWa 1 70 70 kg
Exposure Frequency - outdoor - child EFOc 1 260 350 d
Exposure Frequency - indoor - chuld EFic 1 90 1] d
Exposure Frequency - outdoor - teen EFOt 1 260 350 d
Exposure Frequency - indoor - teen EFit 1 90 0 d
Exposure Frequency - outdoor - adult EFOa 1 260 350 d
Exposure Frequency - indoor - adult EFla 1 90 0 d
Days per Year dpy 365 365 350 dy
Exposure Duration - child EDc 1 6 6 y
Exposure Duration - teen EDt 1 2 1 y
Exposure Duration - adult EDa 1 9 13 y
Years in Lifetme Lifetime 70 70 70 y

Page 2
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Ix.Prob.6.SYLK

Crystal Ball® Simulation

Started on Thu, May 30, 1996 at 19:24:07
Stopped on Thu, May 30, 1996 at 20:41:50

Forecast: SoilBaPeq Cell: G11
Summary: Certainty Level is 100.00% based on Entire Range
Certainty Range is from - to == mg/kg
Display Range is from 0.000 to 100.000 mg/kg
Entire Range is from 0.473 to 99.474 mg/kg
After 20,000 Trials, the Std. Error of the Mean is 0.15
Statistics: Di n Entire Range
Trials 20,000 20,000
Percent of Other 100.00 100.00
Mean 27.118 27.118
Median 20.843 20.843
Mode 7.500 7.500
Standard Deviation 21.120 21.120
Variance 446.063 446.063
Skewness 1.23 1.23
Kurtosis 4.02 4.02
Coeff. of Variability 77.88 77.88
Range Width 100.000 99.001
Range Minimum 0.000 0.473
Range Maximum 100.000 99.474
Mean Std. Error 0.15 0.15
Forecast: SoilBaPeq
Cell G11 Frequency Distribution 20000 Trials
.03 667
031 500
= a
S .024 334 &
o o
- «
.00~ -0
0.000 25.000 50.000 75.000 100.000
mg/kg :

5/31/96
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Forecast: SoilBaPeq (Cont'd)

Percentiles for Entire Range (mg/kg):

Percentile
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

End of Forecast

5/31/96

Z'Eif.“;-‘_.:__, Doieear

SoilBaPeq

0.473

6.355

9.470
12.781
16.409
20.844
26.058
33.256
42.569
58.164
99.474

Cell: G11

Page: 2



Forecast: log10ILCRo

Summary: Certainty Level is 100.00% based on Entire Range
Certainty Range is from - to <= log10prob
Display Range is from -8.00E+0 to -2.00E+0 log10prob
Entire Range is from -9.87E+0 to -2.95E+0 log10prob
After 20,000 Trials, the Std. Error of the Mean is 0.01

Cell: G71

Statistics: Display Range Entire Range
Trials 19,895 20,000
Percent of Other 99.47 100.53
Mean -5.45e+0 -5.46e+0
Median -5.39e+0 (unavailable)
Mode -5.09e+0 (unavailable)
Standard Deviation 7.84e-1 8.11e-1
Variance 6.15e-1 6.58e-1
Skewness -0.34 (unavailable)
Kurtosis 2.96 (unavailable)
Coeff. of Variability -14.40 -14.85
Range Width 6.00e+0 6.92e+0
Range Minimum -8.00e+0 -9.87e+0
Range Maximum -2.00e+0 -2.95e+0
Mean Std. Error 0.01 0.01

Forecast: log10ILCRo
Cell G71 Frequency Distribution 19895 Trials
.03 620
.02 465
=4 T
= a
5 .02 310 ©
D
o 3
o O
b «
o 01 155
.00 L 0
-8.00e+0 -6.50e+0 -5.00e+0 -3.50e+0 -2.00e+0
log10prob

Percentiles for Entire Range (log10prob):

Percentile log10ILCRo
0% -9.87E+0

10% -6.52E+0

20% -6.12E+0

30% -5.83E+0

40% -5.60E+0

50% -5.40E+0

5/31/96
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Forecast: log10ILCRo (Cont'd)

Percentile
60%

70%

80%

90%
100%

End of Forecast

5/31/96

log10ILCRo

-5.20E+0
-5.00E+0
-4.77E+0
-4.48E+0
-2.95E+0

Cell: G71

Page: 4



Forecast: iog10ILCRd Cell: G72
Summary: Certainty Level is 100.00% based on Entire Range
Certainty Range is from - to - log10prob )
Display Range is from -8.00E+0 to -2.00E+0 log10prob -
Entire Range is from -1.13E+1 to -2.75E+0 logt0Oprob e
After 20,000 Trials, the Std. Error of the Mean is 0.01 o -
Statistics: Di n ntir n
Trials 19,371 20,000
Percent of Other 96.86 103.25
Mean -5.95e+0 -6.03e+0
Median -5.93e+0 (unavailable)
Mode -5.83e+0 (unavailable)
Standard Deviation 8.76e-1 9.80e-1
Variance 7.68e-1 9.60e-1
Skewness -0.04 = (unavailable)
Kurtosis 2.57 : (unavailable)
Coeff. of Variability -14.73 ) , -16.25
Range Width 6.00e+0 T et TR EREg 55e+0
Range Minimum -8.00e+0 -1.13e+1
Range Maximum -2.00e+0 -2.756+0
Mean Std. Error 0.01 0.01
Forecast: 1og10ILCRd
Cell G72 Frequency Distribution 1 9371 Trials
.03 =536
02 i 0

Probability
2

| HHHHH HHIH

nN

(o]

m .
fiauanba.y

o H“H’HHH ‘ H -
.00 —3— 0
-8.00e+0 -6.500+0 -5.00e+0 -3.50e+0 -2.00e+0
log10prob .
Percentiles for Entire Range (log10prob):

Percentile 1og10ILCRd

0% -1.13E+1

10% -7.31E+0

20% -6.81E+0

30% -6.48E+0

40% -6.20E+0

50% -5.96E+0

5/31/96
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Forecast: log10ILCRd (Cont'd)

Percentile log10ILCRd
60% -5.73E+0
70% -5.48E+0 _
80% -5.20E+0
90% -4.83E+0
100% -2.75E+0 ey

End of Forecast

5.

L

5/31/96

Cell:

P

- >:='_:;;-;“;;l

G72
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Forecast: 10g10ILCR

Summary: Certainty Level is 100.00% based on Entire Range
Certainty Range is from -e to e log10prob
Display Range is from -8.00E+0 to -2.00E+0 log10prob
Entire Range is from -9.64E+0 to -2.75E+0 log10prob

Cell

. G74

After 20,000 Trials, the Std. Error of the Mean is 0.01 )

Statistics: Display Range Entire Range
Trials 19,945 20,000
Percent of Other 99.72 100.28
Mean -5.24e+0 -5.25e+0
Median -5.18e+0 (unavailable)
Mode -5.05e+0 (unavailable)
Standard Deviation 7.72e-1 7.88e-1
Variance 5.95e-1 6.22e-1
Skewness -0.41 (unavailable)
Kurtosis 3.14 st v e {unavaitable) <
Coeff. of Variability -14.72 B . 21807 -,
Range Width 6.00e+0 B P ;6789040 &

~ Range Minimum -8.00e+0 -9.64e+0
Range Maximum -2.00e+0 -2.75e+0
Mean Std. Error 0.01 0.01
Forecast: log10ILCR
Cell G74 Frequency Distribution 19945 Trials
.03 650
.02 488
2 =
= a
S .02 325 §
o 3
o o
L «
o o1 162
.00- L o
-8.00e+0 -6.50e+0 -5.00e+0 -3.50e4+0 -2.00e+0
log10prob o
Percentiles for Entire Range (log10prob):
Percentile log10l
0% -9.64E+0
10% -6.28E+0
20% -5.88E+0
30% -5.61E+0
40% -5.39E+0
50% -5.19E+0

5/31/96
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Forecast: log10ILCR (Cont'd) Cell: G74

Percentile iog10ILCR
60% -5.00E+0
70% -4.80E+0
80% -4.58E+0 -1
90% -4.30E+0 T
- 100% -2.75E+0 =
End of Forecast Temnrs 7

5/31/96 Page: 8



Assumptions

Assumption: LnSoilBaPeq

Normal distribution with parameters:

Mean 3.100
Standard Dev. 0.950
Selected range is from - to 4.600
Mean value in simulation was 2.981
Assumption: LnTC
Normal distribution with parameters:
Mean -0.877
Standard Dev. 0.366
Selected range is from - to 0.000
Mean value in simulation was -0.886
Assumption: LnSIRa
Normal distribution with parameters:
Mean 3.440
Standard Dev. 0.800
Selected range is from -eo t0 e
Mean value in simulation was 3.445
Assumption: LnSIRt
Normal distribution with parameters:
Mean 3.440
Standard Dev. 0.800

Selected range is from -o< {0 =
Mean value in simulation was 3.446

5/31/96

Probability

Probability

Probability

Probability

Cell: G10

LnSoilBaPeq

Cell: G12

LnTC

Cell: G17

LnSIRa

Cell: E17

LnSIRt

>

2.240 3 440 4.640 5.840

<
Y
o

Page: 9



Assumption: LnSIRc Cell: C17

LnSiR¢c

Normal distribution with parameters:
Mean 4.130
Standard Dev. 0.800

Probability

Selected range is from -eo t0 oo
Mean value in simulation was 4.129

Assumption: NAAFo Cell: G19

Beta distribution with parameters: NAAFo
Alpha 1.00
Beta 3.00

Probability

Selected range is from 0.00 to 1.00
Mean value in simulation was 0.25

0.50 0.76 100

o
o
o©
o
n
"

4

Assumption: LnSAR Cell: G25
Normal distribution with parameters: LnSAR
Mean -1.710
Standard Dev. 1.010

Probability

Selected range is from - t0 oo
Mean value in simulation was -1.718

Assumption: LnDAR Cell: G27

Normal distribution with parameters: LnDAR
Mean -3.100
Standard Dev. 1.010

Probability

Selected range is from -e< to o
Mean value in simulation was -3.092

Assumption: NAAFd Cell: G31
Beta distribution with parameters:
Alpha 1.00
Beta 5.00
Selected range is from 0.00 to 1.00
Page: 10
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Assumption: NAAFd (Cont'd) Cell: G31

Mean value in simulation was 0.17 NAAFd

Probability

0 00 02s 060 0785 100

Assumption: DAAFd Cell: G32

Beta distribution with parameters:
Alpha 4.00
Beta 1.00

Selected range is from 0.00 to 1.00
Mean value in simulation was 0.80

Probebility

.00 025 0.50 0.75 100

o

Assumption: LnBWa Cell: G38

Normal distribution with parameters:
Mean 4.263

Standard Dev. 0.206

Probability

Selected range is from -oo {0 e
Mean value in simulation was 4.264

Assumption: LnBWt Cell: E38

Normal distribution with parameters: LnBWt
Mean 3.750

Standard Dev. 0.370

Probability

Selected range is from - {0 o
Mean value in simulation was 3.755 -

Assumption: LnBWc Cell: C38
Normal distribution with parameters:
Mean 2.690
Standard Dev. 0.330

Selected range is from -co t0 o

5/31/96 " Page: 11



Assumption: LnBWc (Cont'd)

Mean value in simulation was 2.690

Assumption: FractOwn
Uniform distribution with parameters:
Minimum
Maximum

Selected range is from 0.000 to 1.000
Mean value in simulation was 0.503

Assumption: ResOwn

Exponential distribution with parameters:

Rate

Selected range is from 0.000 t0 =
Mean value in simulation was 11.062

Assumption: ResRent

Exponential distribution with parameters:

Rate

Selected range is from 0.000 to =
Mean value in simulation was 2.346

Assumption: EFOc

Custom distribution with parameters:
Continuous range
Continuous range
Continuous range
Continuous range

5/31/96

0.000
1.000

0.090

0.430

86 to
143 to
196 to
246 to

Probabiitty

Probability

Probability

Prababtlity

Cell: C38
LnBWc
2.1988
Cell: G49
FractOwn X
0 000 0.250 0.600 0 750 1 000
Cell: G50
L
o coo 12.792 25.584 38.376 51 w-o
Cell: G51
ResRent .
8 032 10 710
Cell: C45
Belative Probability
143 0.30
196 0.50
246 0.15
282 0.05



Assumption: EFOc (Cont'd)
Total Relative Probability

Mean value in simulation was 165

Assumption: EFOt

Custom distribution with parameters:

Continuous range
Continuous range
Continuous range
Continuous range
Total Relative Probability

Mean value in simulation was 181

Assumption: EFOa

Custom distribution with parameters:

Continuous range
Continuous range
Continuous range
Continuous range
Total Relative Probability

Mean value in simulation was 168

End of Assumptions

5/31/96

86 to
143 to
196 to
246 to

86 10
143 to
196 to
246 to

Ralative Prabability

Relative Probability

Relative Prabability

Cell: C45

1.00

Cell: E45

Relative Probability
143 0.15
196 0.55
246 0.20
282 0.10
1.00

Cell: G45

Relative Probability
143 0.30
196 0.45
246 0.20
282 0.05
1.00

Page: 13



A.169.03 2800 S. Sacramento Site

Appendix A

Background Concentrations of Benzo(a)pyrene
in Soil Samples Near the Industrial Property

25 October 1996

Alceon Corporation
PO Box 382669
Harvard Square Station
Cambridge, MA 02238-2669

617-864-4300
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A.169.03 2800 S. Sacramento Sit

Appendix A

Background Concentrations of Benzo(a)pyrene
in Surface Soil Samples Near the Industrial Property

In this Appendix, we present the measurements of the concentrations of carcinogenic

polycyclic aromatic hydrocarbons (cPAHSs) -- as expressed in terms of benzo(a)pyrene
equivalents (mg/kg BaPeq, equivalent to ppm) -- for surface soil samples representing
"urban background concentrations” for the site in Chicago, IL.

As shown in Table A-1, we have organized the surface soil samples into three groups.

Group A - the 7 surface soil samples taken by lllinois Environmental Protection
Agency (IEPA) during the early 1990s from residential properties located to the
west of Kedzie Blvd. The US Environmental Protection Agency has nominated
these samples as representative of urban background conditions, although no
formal sampling plan nor QA/QC program for these samples has been provided.

Group B - the 2 surface soil samples taken by IEPA during 1991 and 1992 from
Douglas Park, more than 2,500 ft north of the Celotex property. The US
Environmental Protection Agency has proposed these samples as representative
of urban background conditions, although no formal sampling plan nor QA/QC
program for these samples has been provided.

Group C - the 40 surface soil samples taken by ERM - North Central (ERM)
during 1995 from residential properties located in a band between the radii of
1,500 ft and 2,500 ft in Sectors 1 and 8 to the north of the Celotex property.
Using powerful statistical methods, Dr. Louis Anthony Cox, Jr. of Cox Associates
has demonstrated that the spatial pattems of these concentrations are unrelated
-- with 95 percent confidence -- to any airbome cPAHSs that may have emanated
at any time from the industrial property (See Appendix B.) Thus, these 40
samples, collected under a stringent sampling plan with strong QA/QC
provisions, now provide a strong statistical population for samples representing
urban background concentrations.

25 October 1996 { . Alceon ®



A.169.03 2800 S. Sacramento Sit

Taken together, these 49 samples provide a statistical population of measurements
against which other populations of measurements may be compared using
nonparametric tests such as the Wilcoxon Rank Sum test or the Kolmogorov-Smimov
test.

25 October 1996 2 Alceon ®
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In[xn]

LogNormal Probability Plot for
49 Samples

T

A.169.03 - 2800 S. Sacramento

25 October 1996

Alceon



Celotex.BaPeq.250ct96

Table A-

1

A.169.03 - 2800 S. Sacramento

Soil Samples Representing "Urban Background Concentrations" .

Group A Group B Group C
Map ID BaPeq Map 1D BaPeq Map ID BaPeq

mg/kg mg/kg mgkg

ID236 1.2 D200 0.7 1D25 45
ID237 1.8 ID229 1.9 ID26 49
ID238 9.0 ID32 4.0
{D239 1.9 D14 29
ID240 1.7 ID15 29
ID243 1.8 ID16 47
D244 1.9 ID17 3.2
iD18 5.0

ID19 43

iD20 24

ID21 2.8

ID22 3.6

ID23 2.7

iD24 22

ID71 23

ID72 1.7

ID73 3.4

ID74 1.6

ID75 3.8

ID76 1.5

ID77 2.0

ID78 1.5

1D79 24

D80 21

D81 24

D82 26

iD83 1.6

iD84 22

1D85 11

ID86 2.0

ID87 2.0

D88 1.9

ID27 2.2

ID28 5.5

ID29 4.9

ID30 26.0

ID31 8.1

ID89 3.0

ID90 5.1

ID91 5.0

25 October 1996 Page 1 Alceon &



Celotex.BaPeq.250¢t96 A.169.03 - 2800 S. Sacramento

Notes:

A detection limit of 0.5 ppm is assumed when
no detection limit is reported.

For Background data, a detection limit of 0.5 ppm
is assumed when no value whatsoever is reported.

25 Qctober 1996 Page 2 Alceon ®
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2800 S. Sacramento Site

Appendix B

Estimating the Spatial Extent of
Site-Related Contamination

g

25 October 1996

Cox Associates
503 Franklin Street
Denver, CO 80218

303-541-6043



A.169.03 2800 S. Sacramento Site
Appendix B

ESTIMATING THE SPATIAL EXTENT OF SITE-RELATED
CONTAMINATION

CONCEPTS FOR SPATIAL DATA ANALYSIS

To assess the spatial extent of the human health risk that might
potentially be associated with the Celotex property, it is useful determine
whether there is any distance from the fenced Celotex-property beyond which
there is no association between soil concentrations of carcinogenic PAHs
(measured as B(a)P equivalents) and distance from the property. If soil
concentrations are statistically independent of distance from the Celotex
property at all locations more than a certain distance, d, from the Celotex
property, then these locations may be considered to be "background" locations
for the purposes of quantifying the effects of contamination due to the Celotex
property. (The distance d may be different in different directions, due to
asymmetries in the wind rose or transport mechanisms) In other words,
background locations may be defined as locations where there is no
evidence of any contamination from the Celotex property. A first task is to
identify whether there are such background locations.

METHODS FOR SPATIAL DATA ANALYSIS

Even small levels of contamination from the Celotex property can prevent
a location from being classified as background. Therefore, it is desirable to use
techniques that are not sensitive to the absolute magnitudes of soil
contamination. To detect possible small but consistent additions to
contamination above background levels, it is useful to apply statistical
techniques that examine the spatial pattemn of concentrations and that seek to
identify where (if anywhere) they stop being related to distance from the Celotex
property. Such statistical methods are ordinal: they test whether closer
proximity to the property is associated with higher soil concentrations, without
regard for the absolute magnitude of the concentrations.

25 October 1996 1 © Cox Associates, 1996



A.169.03 2800 S. Sacramento Site

The following statistical methodology was used to identify distances
beyond which there is no significant association between soil concentrations
and distance from the Celotex property.

Step 1. Choose a coordinate system and compute distances from the center of
the Celotex property to each location. . The original geographic coordinates
("Easting" and "Northing") were translated to assign the coordinates (0, 0) to the
ERM map origin. (This origin is close to Map ID #209, near the center of the
fenced location.) Next, the distance from the origin to each other location was
computed. (Of course, these distances do not depend on the translation of
axes.) These distances provide the key information for testing whether distance
from the Celotex property (defined as distance from the origin) is associated
with concentration.

Note: The analyses were repeated using locations 202, 209, 210, 211, 212,
219, and 220 as the origin. None of the conclusions changes based on which
exact location within the fenced area is taken as the origin.

Step 2: Hypothesis testing. The formal statistical description of this step is as
follows. For different distances, d, around the Celotex property, test the
following null hypothesis:

HO: "For locations more than d feet from the origin, there is no association
between distance from the Celotex property and soil concentration."

against the alternative hypothesis

H1: "For locations more than d feet from the origin, there is an association
between distance from the Celotex property and soil concentration."

Find the smallest distance, d* (if there is one) such that H1 is rejected in favor of
HO (at a p = 5% significance level) for all distances greater than d*. This test
was performed using the Spearman rank correlation coefficient (Siegel, 1956).
It was checked by repeating the analysis using Kendall's Tau (Siegel, 1956)
rather than Spearman's rank correlation coefficient to quantify the strength of
association between distance and concentration.

25 October 1996 2 © Cox Associates, 1996



A.169.03 2800 S. Sacramento Site

Informally, the logic of this step is as follows. For any given radius, d, all
locations more than d feet from the Celotex property are sorted in increasing
order of their distances from the property (i.e., from the origin). Next, it is
checked whether the locations with the highest concentrations tend to occur
disproportionately often toward the top of the sorted list (i.e., whether higher
concentrations tend to be observed more often than would be expected based
on chance alone among locations closer to the origin.) This calculation is made
using the statistical theory of pairwise ordinal associations. The relevant
statistical theory and computational techniques (e.g., Spearman's rank
correlation coefficient and Kendall's Tau) have been widely accepted and
applied as part of mainstream nonparametric statistical theory for more than
forty years. They provide quantitative measures of the ordinal association
between concentrations and distances from the origin. More importantly for the
purposes of this analysis, they allow quantitative calculation of the probability of
observing by chance alone (i.e., in the absence of any true association) an
association between high concentrations and low distances at least as strong
as the association actually observed in the sample data. If this probability (the
"p-value", or significance level, of the test) is small enough, then the hypothesis
of no association is rejected in favor of the hypothesis that there is an
association.

The results from this step can be summarized by a table giving the p-
value of the observed association between distance and concentration among
locations at least d feet from the origin (and outside the fenced Celotex
property), for different values of d.

Technical note: The null hypotheses for increasing values of d actually form a
nested family of hypotheses, tested using smaller and smaller subsets of the
same data (namely, locations at increasing distances from the origin). In
principle, this could raise complications due to the problem known as "multiple
comparisons" (arising from testing multiple hypotheses based on the same
data; see e.g., Bechoffer, 1995). In practice, the number of data points
available for hypothesis testing is relatively large (it is 39 for the largest radius
considered, 1500 feet), so that the hypothesis tests have adequate power to
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detect even relatively weak associations and the problem of multiple
comparisons does not threaten the validity of the conclusions.

Step 3: Refinements and validation of the hypothesis tests. The hypothesis-
testing procedure just described was refined by applying it to different angular
sectors (e.g., to one quadrant at a time). In addition, whenever it was concluded
that locations more than d feet from the Celotex property in a certain direction
(angular sector) were not affected by the Celotex property, then this conclusion
was cross-checked by computing the average gradient (the direction of steepest
increase in concentrations; see Benveniete et al., 1995) from the sampled data.
If the conclusion is correct, the gradient directions computed from subsets of
locations more than d from the origin should show no tendency to point toward
the origin more than they point away from it. These refinements and validation
tests generally confirmed the conclusions based on the Spearman's rank
correlation analysis, so they are not reported on further here.

Step 4: Spatial data analysis based on concentric rings. The preceding steps
were discussed with the EPA (especially, Dr. Arthur Lubin), who contributed
substantial advice and suggested additional tests and improvements. Dr. Lubin
pointed out that to the extent that the spatial data tend to be distributed at
approxirriately the same distance from the origin (so that radial variation toward
or away from the origin is small compared to transverse variation), the
Spearman's rank correlation test and similar methods'may be powerless to
detect an association between distance from the origin and concentration, even
if such an association exists (or would exist and be revealed if there were
adequate radial variation in the sampling plan). To overcome this difficulty, we
reanalyzed the data using an entirely different statistical logic. First, the data
were subdivided into 10 concentric rings at increasing distances around the
origin. Next, the frequency distributions of concentrations among locations
within different rings were compared. These comparisons were carried out
using the Kolmogorov-Smirnov (K-S) nonparametric test, (DeGroot, 1975),
based on a recommendation from Dr. Lubin. This test has the advantage that it
avoids any need to make potentially controversial assumptions about the
specific parametric forms of the concentration distributions. The use of
concentric rings allows the K-S test to examine absolute differences among
distributions, instead of relying on ordinal tests such as the Spearman’s rank
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correlation test. Thus, it provides an alternative statistical logic for investigating
the same issues originally explored using the K-S test. As it turned out, the
concentric ring analysis using the K-S test confirmed the results of the
Spearman's analysis, so the details of the analysis will not be repeated here.
However, we note that the robustness of the conclusions was double-checked
by repeating the concentric ring analysis using 12 rings instead of 10, making a
different assignment of locations to rings, and shifting the origin slightly. In
addition, the concentric ring analysis was applied to individual quadrants.
None of these variations changed the conclusions, suggesting that the main
results of the spatial data analysis are not sensitive to the exact details of the
analytic procedure (i.e., they are "robust" to reasonable changes in the
statistical data analysis techniques applied).

Step 5: Validation of conclusions using linear regression and nonparametric
("loess”) nonlinear regression and classification tree analyses. To further
validate our conclusions, we repeated the statistical analyses using ordinary
linear regression of concentration (and also-log of concentration) against
distance (in different quadrants and in the whole sample) instead of the
Spearman's rank correlation approach. We also used two more sophisticated
techniques from modem computational statistics: classification tree analysis
(now included in S-PLUS and other advanced statistical computing and
artificial intelligence packages) and nonlinear, nonparametric smoothing
("loess" regression), also included in S-PLUS. These more advanced methods
confirmed the main results from the simpler analyses, as reported next.

R TS QF SPATI ATA ANALYSE
Results of Exploratory Analysis Usin earman's Rank Correlation Tes

Table 1 shows the main results of the analysis examining the association
between distance and "concentration” (measured in B(a)P equivalents) among
locations at various distances outside the fence. When locations 1,000 feet or
less from the Celotex property are included, the association between distance
and concentration is highly significant (p values less than 0.01).
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When only locations 1,200 feet or more from the origin are considered, however, the
association becomes much less strong -- less than the 5% significance level often
used as a default level for rejecting the hypothesis of association. Thus, Table 1
suggests that there is a break between 1,100 and 1,200 feet from the Celotex
property, with a significant relation between concentration and distance for locations
inside the 1,100-foot radius, but not for neighborhoods outside the 1,100-foot
radius.

TABLE 1: DISTANCE AND SOIL CONCENTRATION ARE NOT SIGNIFICANTLY
ASSOCIATED BEYOND 1100 FEET FROM THE CELOTEX PROPERTY

Distance in feet (from ID #209) p-value of association
800 feet < 0.000001
900 , 0.000026
950 0.00025
1000 0.00077
1100 0.00377
1200 0.076
1300 0.19
1400 . 0.08
1500 0.19

The above table offers some possible evidence of an association at
distances beyond 1,100 feet, although it is not significant at the p = 0.05 level.
To obtain a more thorough understanding of the data, it is useful to examine the
concentration-distance relation in different directions around the origin. The
results are shown in Table 2.
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TABLE 2: THE ASSOCIATION BETWEEN CONCENTRATION AND DISTANCE
APPEARS TO EXTEND FURTHEST IN THE NORTHEAST QUADRANT

NW Quadrant SW Quadrant NE Quadrant
distance infeet pvalue N p N p N

800 0.0072 48 0.021 20 0.000002 29
900 0.035 46 " " 0.0000045 26
1000 0.14 44  0.047 15 " "
1100 " " 0.28 13 " "
1200 0.15 39 041 10  0.0058 22
1500 0.51 25 0.22- 5 0.016 21

In this table, each quadrant with data (excluding the southeast quadrant, for
which there were no soil samples) has two columns of numbers: (i) The p-
values associated with the Spearman's rank correlation (between concentration
and distance from the origin) for locations outside the Celotex property fence
line and more (less???) than the specified distance from the origin; and (ii)
The number of locations falling in each of these concentric subsets. Ditto marks
indicate distance ranges in which there are no sample data points, so that
increasing the distance does not change the results.

These data suggest that in the northwest and southwest quadrants, the
association between concentration and distance may become insignificant
between 900 and 1100 feet. In the northeast quadrant, the association is
significant at distances out to 1500 feet and beyond. (Only two samples were
taken between 1500 feet and 1700 feet from the origin, and neither of them was
taken from the northeast quadrant, so the exact pattern of concentration vs.
distance between 1500 and 1700 feet cannot be determined.) Note that this
hypothesis-testing procedure does not provide an exact boundary between
significant and non-significant associations, since there is some noise in the p-
values based on the sample data, and since data are scarce in the distance
range from 1500 to 1700 feet. Also, the fact that the data sets considered are
concentric introduces a multiple hypothesis testing problem. However, it is
clear from these data that the northeast quadrant deserves additional analysis
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and may be a greater source of potential concern than the other two quadrants,
based on the sample data.

These analyses, which we regard as exploratory but useful, show that to
. the west of the Celotex property, there is no evidence ‘of a significant
association between concentration and distance for locations more than 1500
feet from the Celotex property. [There is about a 46% probability that the
observed association among locations beyond 1500 feet, or a stronger one,
would occur by chance. This conclusion was double-checked using Kendall's
Tau (Siegel, 1956), which applies a different statistical logic based on the
similarity of rankings of locations by distance from the origin and by
concentration. The resulting p-level was 0.46, indicating that the observed
degree of association between concentration and distance for locations beyond
1500 feet is no stronger than would be expected to occur by chance alone in
the absence of any true association.] In contrast, there is strong evidence of a
negative association between distance and concentration (i.e., higher
concentrations occur at smaller distances from the Celotex property) among
locations less than 900 feet from the Celotex property. Between about 1000
and 1400 feet, the evidence is ambiguous and conclusions are uncertain due to
sampling variability ("noise") in the sample data. To the northeast, there is
evidence of a significant association at distances out to 1500 feet and beyond.
This association is worth additional examination.

Thus, if the goal is to identify locations for which one can be confident
that there is significant contamination associated with (distance from) the
Celotex property, then one might choose locations inside the 1000-foot radius
(or further out in the northeast). If the goal is to identify locations for which one
can be quite confident that there is no significant association with distance from
the Celotex property, then one could choose neighborhoods outside the 1500
foot radius (and further out in the northeast quadrant).
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Results of Other Tests: Ring Analysis, Linear and Nonlinear Regression, Tree
Analysis

More detailed analyses using the K-S test to compare the concentration
distributions in "rings" at different distances from the origin established the
following key results:

1. Distance is not significantly associated with concentration among all
locations more than 1,200 feet from the origin.

2. In the northeast quadrant specifically, distance is not significantly associated
with concentration among all locations more than 1,500 feet from the origin.
(There is only one data point between 1200 and 1500 feet from the origin in the
northeast quadrant, so that possible association between distance and
concentration over this interval cannot be determined from the available data.)

These findings are further supported by the "loess" nonparametric nonlinear
regression, which suggests that the negative association between distance from
the origin and concentration disappears between 1200 and 1500 feet from the
origin in the northeast quadrant and in the whole data set. Simple linear
regression of concentration or log-concentration agaihst distance leads to
similar conclusions. For example, the log-concentration regression coefficient
for DISTANCE when all data points in the northeast quadrant (out to a mile) and
more than 1100 feet from the origin are considered is highly significant (p =
0.00015). At distances of 1200 feet and more, the regression coefficient for
distance becomes insignificant ( p > 0.2). This is consistent with the hypothesis
that there is no significant association between concentration and distance
beyond 1,200 feet from the origin, even in the northeast quadrant.

Finally, the classification tree analysis, which uses a very different
approach (minimizing classification entropy) from any of the other methods
considered, reaches very compatible conclusions. When asked to discover
rules for predicting concentration in B(a)P equivalents for locations outside the
Celotex fence, based on the available sample data, this rmethod automatically
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determines that locations more than 1193 feet from the origin tend to have
significantly lower concentrations than locations closer to the origin. It
automatically clusters the locations into the following four rings:

¢ Less than 470 feet from the origin (mean concentration = 30.5).
e 471 - 763 feet from the origin (mean concentration = 27)

e 764 - 1193 feet from the origin (mean concentration = 10.4)

e More than 1193 feet from the origin (mean concentration = 3.4).

Thus, to a close approximation, this method also leads to the conclusion that
locations more than 1,200 feet from the origin (in any direction) may be pooled
together and treated as "background" locations for purposes of statistical
analysis.

DISCUSSION OF SPATIAL DATA ANALYSIS RESULTS

The analysis reported here suggests that 1,200 feet may be used as a
statistically supported boundary between "background” locations (not affected
by the Celotex property in any statistically detectable or observable way) and
locations that might plausibly have been affected. Given the starcity of data
points between 1,200 feet and 1,500 feet from the origin, and the desire to be
health-protective in the absence of relevant information, it appears reasonable
to treat 1,500 feet as a useful outer bound on the distance at which
contamination from the Celotex property affects soil sample concentrations. At
the other extreme, it is almost certain that locations less than about 900 to 1000
feet from the Celotex property have concentrations that tend to increase as one
moves toward the property. A reasonable compromise between these extremes
might be at a radius of about 1,100 feet for locations west of the Celotex
property (i.e., in the northwest or southwest quadrants) and at a radius of about
1300 feet to its northeast, as distances at which the hypothesis of contamination
associated with the Celotex property cannot be either proved or disproved
based on the available data.

The frequency distribution of concentrations among "background"

locations (defined conservatively as locations more than 1500 teet tfrom the
origin) is well-approximated (according to a K-S test) by a log-normal
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distribution with mean 1.0 and variance 0.4. The range of variation in a sample
of size 40 spans more than an order of magnitude, from 0.65 to over 26. This
has important implications for risk management. Any remediation planning
effort that seeks to make the concentrations at locations near the Celotex
property indistinguishable from (or at least as clean as) the concentrations at
background locations must recognize this variability. For example, the goal of
cleanup activities might be to reduce the distribution of concentrations among
locations potentially affected by the Celotex property so that it is
indistinguishable from the empirical distribution of concentrations at
background locations. In this case, the decision of which locations to address
first and when to stop should reflect the inherent variability in the concentration
distribution among background locations.

The concentration distribution among locations less than 1,000 feet from
the Celotex property but outside the fence is well approximated (again
according to a K-S test) by a log-normal distribution with mean 2.8 and variance
0.6. The range of values is from 2.1 to 61, almost a 30-fold range. This
suggests that there may be substantial gains to health protection to be achieved
by focusing on locations in the upper tail of this distribution. Moreover, there is
substantial overlap between the concentration distributions of "foreground"
locations (e.g., those less than 1,000 feet from the origin but outside the fence)
and "background” locations (e.g., those more than 1,500 feet from the origin).
Focusing on locations in the upper tail of the foreground locations can help to
minimize the overlap between concentrations at properties that are addressed
and concentrations at background locations that are not addressed.
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Benzo (a)pyrene

1 - IRIS

NAME, - Benzo{alpyrene (BaP)
RN - 50-32-8

IRSN - 133

DATE - 941102

UPDT - 11/02/94, 1 field

STAT - Oral RfD Assessment (RDO) no data

STAT - Inhalation RfC Assessment (RDI) no data

STAT - Carcinogenicity Assessment (CAR) on-line 11/01/94

STAT - Drinking Water Health Advisories (DWHA) no data

STAT - U.S. EPA Regulatory Actions (EXSR) on-line 01/01/92

IRH -~ 08/01/89 REFS Bibliography on-line

IRH - 01/01/92 CAR Carcinogen assessment noted as pending change

IRH - 01/01/92 EXSR Regulatory actions updated

IRH - 04/01/92 CAR Summary revised; oral quantitative section added
IRH - 04/01/92 CREF Carcinogen assessment references revised

IRH - 05/01/92 CARDR Work group review and verification date corrected
IRH - 07/01/92 CAR Text revised in NOTE

IRH - 07/01/92 CARO Range of slope factors corrected

IRH - 07/01/92 CARO Slope factor and risks corrected

IRH - 07/01/92 CARO Data table heading corrected

IRH - 07/01/92 CARO Slope factor corrected; last paragraph -
IRH - 07/01/92 CARDR Secondary contact changed

IRH - 09/01/93 CAR Carcinogenicity assessment noted as pending change
IRH - 09/01/93 CARDR Work group review date added

IRH - 12/01/93 CREF Reference revised - U.S. EPA, 1991b

IRH - 02/01/94 CARDR Primary contact's phone number changed

IRH - 03/01/94 CAR Pending change note removed; no change

IRH - 03/01/94 CARDR Work group review date added

IRH - 07/01/94 CARDR Work group review date added

IRHE - 11/01/94 CARO Slope factor clarified; changed O to *0*

RLEN - 25760

SY - BaP

SY - Benzo[alpyrene

SY - BENZO(d4d, e, £)CHRYSENE
SY - 3,4-BENZOPIRENE

SY ~ 3,4-BENZOPYRENE

SY - 6,7-BENZOPYRENE

SY - BENZO(a) PYRENE

Sy - 3,4-BENZPYREN

SY - 3,4-BENZPYRENE

SY - 3,4-BENZ(a)PYRENE
SY - BENZ(a) PYRENE

SY - 3,4-BENZYPYRENE

sY - BP

Sy - 3,4-BP

Sy - Bf(a)p

SY - RCRA WASTE NUMBER U022

CAREV-
o0 CLASSIFICATION : B2; probable human carcinogen
o BASIS FOR CLASSIFICATION : Human data specifically linking

benzo [alpyrene (BAP) to a carcinogenic effect
are lacking. There are, however, multiple
animal studies in many species demonstrating
BAP to be carcinogenic following
administration by numerous routes. BAP has
produced positive results in numerous
genotoxicity assays. NOTE: At the June 1992
CRAVE Work Group meeting, a revised risk
estimate for benzolalpyrene was verified (see
Additional Comments for Oral Exposure). This
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section provides information on three aspects
of the carcinogenic risk assessment for the
agent in question; the U.S. EPA
classification, and guantitative estimates of
risk from oral exposure and from inhalation
exposure. The classification reflects a
weight-of-evidence judgment of the likelihood
that the agent is a human carcinogen. The
quantitative risk estimates are presented in
three ways. The slope factor is the result of
application of a low-dose extrapolation
procedure and is presented as the risk per
(mg/kg) /day. The unit risk is the
quantitative estimate in terms of either risk
per ug/L drinking water or risk per ug/cu.m
air breathed. The third form in which risk is
presented is a drinking water or air
concentration providing cancer risks of 1 in
10,000 or 1 in 1,000,000. The Carcinogenicity
Background Document provides details on the
rationale and methods used to derive the
carcinogenicity values found in IRIS. Users
are referred to the Oral Reference Dose (RfD)
and Reference Concentration (RfC) sections
for information on long-term toxic effects
other than carcinogenicity.

o HUMAN CARCINOGENICITY DATA :

Inadequate. Lung cancer has been shown to be induced in humans by various
mixtures of polycyclic arcmatic hydrocarbons known to contain BAP including
cigarette smoke, roofing tar and coke oven emissions. It is not possibile,
however, to conclude from this information that BAP is the responsible agent.

sufficient. The animal data consist of dietary, gavage, inhalation,
intratracheal instillation, dermal and subcutaneous studies in numerous
strains of at least four species of rodents and several primates. Repeated
BAP administration has been associated with increased incidences of total
tumors and of tumors at the site of exposure. Distant site tumors have also
been observed after BAP administration by various routes. BAP is frequently
used as a positive control in carcinogenicity bioassays.

BAP administered in the diet or by gavage to mice, rats and hamsters has
produced increased incidences of stomach tumors. Neal and Rigdon (1967) fed
BAP (purity not reported) at concentrations of 0, 1, 10, 20, 30, 40, 45, 50,
100 and 250 ppm in the diets of male and female CFW-Swiss mice. The age of
the mice ranged from 17-180 days old and the treatment time from 1-197 days;
the size of the treated groups ranged from 9 to 73. There were 289 mice
{(number of mice/sex not stated) in the control group. No forestomach tumors
were reported in the 0-, 1- and 10-ppm dose groups. The incidence of
forestomach tumors in the 20-, 30-, 40-, 45-, 50-, 100- and 250-ppm dose
groups were 1/23, 0/37, 1/40, 4/40, 23/34, 19/23 and 66/73, respectively. The
authors felt that the increasing tumor incidences were related to both the
concentration and the number of doses administered. Historical control
forestomach tumor data are not available for CFW-Swiss strain mice. In
historical control data from a related mouse strain, SWR/J Swill, the
forestomach tumor incidence rate was 2/268 and 1/402 for males and females,
respectively (Rabstein et al., 1973).

Brune et al., (1981) fed 0.15 mg/kg BAP (reported to be "highly pure®) in
the diet of 32 Sprague-Dawley rats/sex/group either every 9th day or S
times/week. These treatments resulted in annual average doses of 6 or 39
mg/kg, respectively. An untreated group of 32 rats/sex served as the control.
Rats were treated until moribund or dead; survival was similar in all groups.
Histologic examinations were performed on each rat. The combined incidence of
tumors of the forestomach, esophagus and larynx was 3/64, 3/64 and 10/64 in
the control group, the group fed BAP every 9th day and the group fed BAP 5
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times/week, respectively. A trend analysis showed a statistically significant
tendancy for the proportion of animals with tumors of the forestomach,
esophagus or larynx to increase steadily with dose (Knauf and Rice, 1992).

As part of the same study, Brune et al. (1981) administered BAP ("highly
pure") orally to Sprague-Dawley rats by caffeine gavage. The rats were
treated until moribund or dead; all rats were subjected to terminal
histopathologic examination. Gavaged rats were divided into 3 dose groups of
32 rats/sex/group; the groups received 0.15 mg/kg per gavage either every Sth
day (Group A), every 3rd day (Group B) or 5 times per week (Group C); these
treatments resulted in annual average doses of 6, 18 or 39 mg/kg,
respectively. Untreated and gavage (5 times/week) controls (32
rats/sex/group) were included. The median survival times for the untreated
control group; the gavage control group; and groups A, B and C were 129, 102,
112, 113 and 87 weeks, respectively. The survival time of Group C was short
compared with controls and may have precluded tumor formation (Knauf and Rice,
1992) . The combined tumor incidence in the forestomach, esophagus and larynx
was 3/64, 6/64, 13/64, 26/64 and 14/64 for the untreated control group, gavage
control group, group A, group B and group C, respectively. There was a
statistically significant association between the dose and the proportions of
rats with tumors of the forestomach, esophagus or larynx. This association is
not characterized by a linear trend. The linearity was affected by the
apparently reduced tumor incidence that is seen in the high-dose group (Knauf
and Rice, 1992).

Intratracheal instillation and inhalation studies in guinea pigs, hamsters
and rats have resulted in elevated incidences of respiratory tract and upper
digestive tract tumors (U.S. EPA, 199la). Male Syrian golden hamsters
(24/group) were exposed by inhalation to 0, 2.2, 9.5 or 46.5 mg BAP/cu.m in a
sodium chloride aerosol (Thyssen et al., 198l). (Greater than 99% of the
particles had diameters between 0.2 and 0.5 um.) For the first 10 weeks of
the study, the hamsters were exposed to BAP daily for 4.5 hours/day;
thereafter, daily for 3 hours/day. Animals dying within the first year of the
study were replaced; the effective number of hamsters in the control, low-,
mid- and high-dose groups was 27, 27, 26 and 25, respectively. (The total
time of treatment, although over 60 weeks, was not stated.) During the first
10 weeks, animals in the 3 dose groups reportedly lost weight. After week 10,
however, the body weights in all groups were similar until week 60 when the
body weights of hamsters in the high-dose group decreased and the mortality
increased significantly. The incidence of respiratory tract tumors ({(including
tumors of the nasal cavity, larynx and trachea) in the control, low-, mid- and
high-dose groups was 0/27, 0/27, 9/26 and 13/25, respectively; the incidences
of upper digestive tract tumors (including tumors of the pharynx, esophagus
and forestomach) were 0/27, 0/27, 7/26 and 14/25, respectively. Trend
analysis for incidences of both respiratory tract tumors and upper
gastrointestinal tract tumors showed a statistically significant tendancy for
the proportion of animals with either tumor type to increase steadily with
increased dose (Knauf and Rice, 1992).

Intraperitoneal BAP injections have caused increases in the number of
injection site tumors in mice and rats (reviewed in U.S. EPA, 1991a).
Subcutaneous BAP injections have caused increases in the number of injection
gite tumors in mice, rats, guinea pigs, hamsters and some primates (IARC,
1983; U.S. EPA, 1991a). BAP is commonly used as a positive control in many
dermal application biocassays and has been shown to cause skin tumors in mice,
rats, rabbits and guinea pigs. BAP is both an initiator and a complete
carcinogen in mouse skin (IARC, 1983). Increased incidences of distant site
tumors have also been reported in animals as a consequence of dermal BAP
exposure (reviewed in U.S. EPA, 1991la).

BAP has also been reported to be carcinogenic in animals when administered
by the following routes: i.v.; transplacentally; implantation in the stomach
wall, lung, renal parenchyma and brain; injection into the renal pelvis; and
vaginal painting (U.S. EPA, 1991a).

o SUPPORTING DATA :

Benzo[a]pyrene has been shown to cause genotoxic effects in a broad range
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of prokaryotic and mammalian cell assay systems (U.S. EPA, 1991a). In
prokaryotes, BAP tested positive in INA damage assays and in both reverse and
forward mutation assays. In mammalian cell culture assays, BAP tested
positive in DNA damage assays, forward mutation assays, chromosomal effects
assays and cell transformation assays.

CARO -

o CLASSIFICATION : B2; probable human carcinogen

o BASIS FOR CLASSIFICATION : Human data specifically linking
benzo[a)lpyrene (BAP) to a carcinogenic effect
are lacking. There are, however, multiple
animal studies in many species demonstrating
BAP to be carcinogenic following
administration by numerous routes. BAP has
produced positive results in numerous
genotoxicity assays. NOTE: At the June 1992
CRAVE Work Group meeting, a revised risk
estimate for benzo(alpyrene was verified (see
Additional Comments for Oral Exposure). This
section provides information on three aspects
of the carcinogenic risk assessment for the
agent in question; the U.S. EPA
classification, and quantitative estimates of
risk from oral exposure and from inhalation
exposure. The classification reflects a
weight-of-evidence judgment of the likelihoed
that the agent is a human carcinogen. The
quantitative risk estimates are presented in
three ways. The slope factor is the result of
application of a low-dose extrapolation
procedure and is presented as the risk per
(mg/kg) /day. The unit risk is the
quantitative estimate in terms of either risk
per ug/L drinking water or risk per ug/cu.m
air breathed. The third form in which risk is
presented is a drinking water or air
concentration providing cancer risks of 1 in
10,000 or 1 in 1,000,000. The Carcinogenicity
Background Document provides details on the
rationale and methods used to derive the
carcinogenicity values found in IRIS. Users
are referred to the Oral Reference Dose (RfD)
and Reference Concentration (RfC) sections
for information on long-term toxic effects
other than carcinogenicity.

o ORAL SLOPE FACTOR : 7.3E+0 per (mg/kg)/day

o DRINKING WATER UNIT RISK : 2.1E-4 per (ug/L)

o DOSE EXTRAPOLATION METHOD : Risk estimate based on a geometric mean of
four slope

o RISK/WATER CONCENTRATIONS :

Drinking Water Concentrations at Specified Risk Levels:

Risk Level Concentration
E-4 (1 in 10,000) 5E-1 ug/L
E-5 (1 in 100,000) 5E-2 ug/L

E-6 (1 in 1,000,000) 5E-3 ug/L

© ORAL DOSE-RESPONSE DATA :

Tumor Type -- forestomach, squamous cell papillomas and carcinomas
Test Animals -- CFW mice, sex unknown
Route -- oral, diet
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Reference -- Neal and Rigdon, 1967

a) Conditional upper bound two-stage model with terms for promotion
(modification of Moolgavkar-Venson-Knudson, generalized forms of two-stage
model)

Administered
Dose (ppm) Tumor Incidence
0 0/289
1 0/25
10 0/24
20 1/23
30 0/37
40 1/40
45 4/40
50 24/34
100 19/23
250 66/73

Tumor Type -- squamous cell carcinoma of the forestomach
Test Animals -- SWR/J Swill mice

Route -~ oral, diet

Reference -- Rabstein et al., 1973

Administered

Dose (ppm) Tumor Incidence
0 2/268* male
0 1/402* female

*See additional comments concerning the use of control data from other studies
that utilized similar mouse strains.

b) Same data as above. Upper bound estimate by extrapolation fram 10%
response point to background of empirically fitted dose-response curve.
(Procedure using two-stage model described in (a)).

c) Same data as above except the additional 2 control groups (Rabstein et al.,
1973) were excluded. Generalized Weibull-type dose-response model.

d) Tumor Type -- forestomach, larynx and esophagus, papillomas and carcinomas
(combined). Linearized Multistage Model, Extra Risk.

Test Animals -- Sprague-Dawley rats, males and females
Route -- oral, diet
Reference -- Brune et al., 1981

Dose Tumor
(mg/kg diet/year) Incidence
0 3/64
6 3/64
39 10/64

———— — - ———————— ———— —_——

o ADDITIONAL COMMENTS :

NOTE: The range of oral slope factors calculated was: 4.5E+0 to 11.7E+0 per
(mg/kg) /day.

At the June 1992 CRAVE Work Group meeting, it was noted that an error had
been made in the 1991 document "Dose-Response Analysis of Ingested
Benzo[alpyrene" which is quoted in the Drinking Water Criteria Document for
PAH. In the calculation of the doses in the Brune et al. (1981) study it was
erronecusly concluded that doses were given in units of mg/year, whereas it
was in fact mg/kg/year. When the doses are corrected the slope factor is
correctly calculated as 11.7 per (mg/kg)/day, as opposed to 4.7 per
(mg/kg) /day as reported in the Drinking Water Criteria Document. The correct
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range of slope factors is 4.5 to 11.7 per (mg/kg)/day, with a geometric mean
of 7.3 per (mg/kg)/day. A drinking water unit risk based on the revised slope
factor is 2.1E-4 per (ug/L). Therefore, these values have been changed on
IRIS and an Erratum to the Drinking Water Criteria Document is being prepared.

Risk estimates were calculated from two different studies in two species
of outbred rodents (Neal and Rigdon, 1967; Brune et al., 1981). These studies
have several commonalities including mode of administration, tumor sites,
tumor types and the presumed mechanisms of action. The data sets were not
combined prior to modeling (the preferred approach) because they employed
significantly dissimilar protocols.

The gecmetric mean from several slope factors, each considered to be of
equal merit, was used to calculate a single unit risk. These four slope
factor estimates span less than a factor of three and each is based on an
acceptable, but less-than-optimal, data set. Each estimate is based on a low-
dose extrapolation procedure which entails the use-of -multiple assumptions and
default procedures.

Clement Associates (1990) fit the Neal and Rigdon (1967) data to a two-
stage dose response model. In this model the transition rates and the growth
rate of preneoplastic cells were both considered to be exposure-dependent.
(The functional form for the dose-dependence of preneoplastic cell growth rate
was simple saturation.) A term to permit the modeling of BAP as its own
promoter was also included. Historical control stomach tumor data from a
related, but not identical, mouse strain, SWR/J Swill (Rabstein et al., 1973)
and the CFW Texas colony (Neal and Rigdon, 1967) were used in the modeling. In
calculating the lifetime unit risk for humans several standard assumptions
were made: mouse food consumption was 13% of its body weight/day; human body
weight was assumed to be 70 kg and the assumed body weight of the mouse 0.034
kg. The standard assumption of surface area equivalence between mice and
humans was the cube root of 70/0.034. A conditional upper bound estimate was
calculated to be 5.9 per (mg/kg)/day (U.S. EPA, 199l1a).

A U.S. EPA report (1991b) argued that the upper-bound estimate calculated
in Clement Associates (1990) involved the use of unrealistic conditions placed
on certain parameters of the equation. Other objections to this slope factor
were also raised. The authors of this report used the Neal and Rigdon (1967)
data to generate an upper-bound estimate extrapolated linearly from the 10%
response point to the background of an empirically fitted dose-response curve
(Clement Associates, 1990). Other results, from similar -concepts and
approaches used for other compounds, suggest that the potency slopes
calculated in this manner are camparable to those obtained from a linearized
multistage procedure for the majority of the other compounds. The upper bound
estimate calculated in U.S. EPA (1991b) is 9.0 per (mg/kg)/day.

The authors of U.S. EPA (1991b) selected a model to reflect the partial
lifetime exposure pattern over different parts of the animals' lifetimes. The
authors thought that this approach more closely reflected the Neal and Rigdon
(1967) regimen. A Weibull-type dose-response model was selected to
accommodate the partial lifetime exposure; the upper-bound slope factor
calculated from this method was 4.5 per (mg/kg)/day.

Using the dietary portion of the Brune et al. (1981) rat data, a
linearized multigtage procedure was used to calculate an upper bound slope
factor for humans. In the interspecies conversion the assumed human body
weight was 70 kg and the rat 0.4 kg. The slope factor calculated by this
method was 11.7 per (mg/kg)/day.

o DISCUSSION OF CONFIDENCE

The data are considered to be less than optimal, but acceptable. There
are precedents for using multiple data sets from different studies using more
than one sex, strain and species; the use of the geometric mean of four slope
factors is preferred because it makes use of more of the available data. The
use of the geometric means was based on arguments presented in a personal
communication (Stiteler, 1991).
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CARI - NO DATA
CARDR-
0 CARCINOGENICITY SOURCE :

Source Document -- U.S. EPA, 1991a,b

The 1991 Drinking Water Criteria Document for the polycyclic aromatic
hydrocarbons has received agency review.

DOCUMENT
o REVIEW DATES 01/07/87, 12/04/91, 06/03/92, 08/05/93,
02/02/94,
© VERIFICATION DATE : 12/04/91
o EPA CONTACTS :
Robert E. McGaughy / OHEA -- (202)260-5889

Rita Schoeny / OHEA -- (513)569-7544

HAONE- NO DATA

HATEN- NO DATA

HALTC- NO DATA

Water and Fish Consumption: 2.8E-3 ug/L
Fish Consumption Only: 3.11E-2 ug/L
Considers technological or economic feasibility? -- NO

Discussion -- For the maximum protection from the potential carcinogenic
properties of this chemical, the ambient water concentration should be zero.
However, zero may not be obtainable at this time, so the recommended criteria
represents a E-6 estimated incremental increase of cancer over a lifetime. The
values given represent polynuclear aromatic hydrocarbons as a class.

Reference -- 45 FR 79318 (11/28/80)

EPA Contact -- Criteria and Standards Division / OWRS
(202)260-1315 / FTs 260-1315

Freshwater:
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Acute LEC -- none

Chronic LEC -- none
Marine:
Acute LEC -- 3.0E+2 ug/L
Chronic LEC -- none
Considers technological or economic feasibility? -- NO
Discussion -- The values that are indicated as "LEC" are not criteria, but

are the lowest effect levels found in the literature. LEC's are given when
the minimum data required to derive water quality criteria are not available.
The values given represent polynuclear aromatic hydrocarbons as a class.

Reference -- 45 FR 79318 (11/28/80)

EPA Contact -- Criteria and Standards Division / OWRS
(202)260-1315 / FTS 260-1315

MOLG -
value -- 0 mg/L (Proposed, 1990)

Considers technological or economic feasibility? -- NO

Discussion -- The proposed MCLG for benzo(a)pyrene is zero based on the

evidence of carcinogenic potential (B2).
Reference -- 55 FR 30370 (07/25/90)

EPA Contact -- Health and Ecological Criteria Division / OST /
(202) 260-7571 / FTS 260-7571; or Safe Drinking Water Hotline / (800) 426-4791

Value -- 0.0002 mg/L (Proposed, 1990)
Considers technological or economic feasibility? -- YES

Discussion -- The proposed MCL is equal to the PQL and is associated
with a maximum lifetime individual risk of 1 E-4.

Monitoring requirements -- Community and non-transient water system
monitoring based on state vulnerability assessment; vulnerable systems
to be monitored quarterly for one year; repeat monitoring dependent upon
detection and size of system.

Analytical methodology -- High pressure liquid chromatography (EPA 550,
550.1); gas chromatographic/mass spectrometry (EPA 525): PQL= 0.00602 mg/L.
Best available technology -- Granular activated carbon

Reference ~- 55 FR 30370 (07/25/90)

EPA Contact -- Drinking Water Standards Division / OGWDW /

(202) 260-7575 / FTS 260-7575; or Safe Drinking Water Hotline / (800) 426-4791

IV.B.3. SECONDARY MAXTMUM CONTAMINANT LEVEL (SMCL) for Drinking Water
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No data available

. IV.B.4. REQUIRED MONITORING OF "UNREGULATED" CONTAMINANTS

Status -- Listed (Proposed, 1991)

Discussion -- “Unregulated® contaminants are those contaminants for which
EPA establishes a monitoring requirement but which do not have an associated
final MCLG, MCL, or treatment technique. EPA may regulate these contaminants
in the future.

Monitoring requirement -- All systems to be monitored unless a vulnerability
assessment determines the system is not vulnerable. |

Analytical methodology -- Gas chromatography/mass spectrometry (EPA 525);
high pressure liquid chromatography (EPA 550, 550.1).

Reference -- 56 FR 3526 (01/30/91)

EPA Contact -- Drinking Water Standards Division / OGWDW /
(202) 260-7575 / FTS 260-7575; or Safe Drinking Water Hotline / (800) 426-4791

FIREV- NO DATA

CERC -

Value -- 1 pound (Final, 1989)

Considers technological or economic feasibility? -- NO
Discussion -- The RQ for benzo(a)pyrene is based on potential

carcinogenicity (group B2). This chemical is currently under assessment for
carcinogenicity and chronic toxicity and the RQ is subject to change in future
rulemaking.

Reference -- 54 FR 33418 (08/14/89)

EPA Contact -- RCRA/Superfund Hotline
(800) 424-9346 / (202) 260-3000 / FTS 260-3000

RCRA -
Status -- Listed
Reference -- 52 FR 25942 (07/09/87)

EPA Contact -- RCRA/Superfund Hotline
(800)424-9346 / (202)260-3000 / FTS 260-3000

Benzo(a)pyrene Page 9 Downloaded US EPA IRIS 28 November 1995



No data available

OREF - None

IREF - None

CREF - Brune, H., R.P. Deutsch-Wenzel, M. Habs, S. Ivankovic and D. Schmahl.
1981. Investigation of the tumorigenic response to benzo[alpyrene in
aqueous caffeine solution applied orally to Sprague-Dawley rats. J.
Cancer Res. Clin. Oncel. 102(2): 153-157.

CREF - Clement Associates. 1990. Ingestion dose-response model to
benzo(a)pyrene. EPA Control No. 68-02-4601.

CREF - IARC (International Agency for Research on Cancer). 1983. Certain
Polycyclic Aromatic Hydrocarbons and Heterocyclic Compounds. Monographs
on the Evaluation of Carcinogenic Risk of the Chemical to Man, Vol. 3.
Lyon, France.

CREF - Knauf, L. and G. Rice. 1992. Statistical Evaluation of Several
Benzo[a]pyrene Biocassays. Memorandum to R. Schoeny, U.S. EPA,
Cincinnati, OH. January 2.

CREF - Neal, J. and R.H. Rigdon. 1967. Gastric tumors in mice fed
benzo[a]pyrene -- A quantitative study. Tex. Rep. Biol. Med. 25(4):
553-557.

CREF - Rabstein, L.S., R.L. Peters and G.J. Spahn. 1973. Spontaneous tumors
and pathologic lesions in SWR/J mice. J. Natl. Cancer Inst. 50:
751-758. - '

CREF - Stiteler, W. 1991. Syracuse Research Corporation, Syracuse, NY.
Personal communication with R. Schoeny, U.S. EPA, Cincinnati, OH.

CREF - Thyssen, J., J. Althoff, G. Kimmerle and U. Mohr. 1981. Inhalation
studies with benzo{a]lpyrene in Syrian golden hamsters. J. Natl. Cancer
Inst. 66: 575-577.

CREF - U.S. EPA. 199la. Drinking Water Criteria Document for PAH. Prepared by
the Office of Health and Enviromnmental Assessment, Environmental
Criteria and Assessment Office, Cincinnati, OH for the Office of Water
Regulations and Standards, Washington, DC.

CREF - U.S. EPA. 1991b. Dose-Response Analysis of Ingested Benzolalpyrene (CAS
No. 50-32-8). Human Health Assessment Group, Office of Health and
Environmental Assessment, Washington, DC. EPA/600/R-92/045.

HAREF- None
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Appendix D

Outdoor Exposure Frequencies for the Neighborhoods Near the Industrial Property

We all know that weather strongly affects the nature and duration of outdoor activities.
Since weather data are routinely recorded at both O'Hare and Midway Airports, we use
the weather records from Midway Airport -- the closer of the two airports in Chicago --
as a surrogate for activity patterns. Table 8 in the main report summarizes the average
daily temperatures recorded at Midway Airport from 1961 - 1990 (US Department of
Commerce, 1992). More specifically, the top two rows of data in Table 8 show the
number of days per year that have average temperatures (denoted T) at or above the
stated temperature and -- by difference -- the number of days per year that have
average temperatures below the stated value. For example, in a typical year at Midway
Airport, there are 196 day/yr with T 2 50 degF and 169 day/yr with T < 50 degF.

For children, for example, we assume that T strongly influences the number of days in a
year on which a child behaves in such a way as to ingest incidentally soils outdoors. In
particular, we assume the following information in Table 8.

e For 83 days when T < 32 degF, we assume that no child incidentally ingests
soil outdoors. On such cold days, the soils outdoors are frozen and/or
covered with snow and ice. Children may play outside on such days, but they
cannot ingest the frozen soils.

e For 119 days when T < 40 degF, we assume that 5 percent of children
incidentally ingest some surface soils outdoors.

e For 169 days when T < 50 degF, wé assume that 20 percent of children
incidentally ingest some surface soils outdoors.

e For 222 days when T < 60 degF, we assume that 70 percent of children
incidentally ingest some surface soils outdoors.

e For 86 days when T > 70 degF, we assume that 100 percent of children
incidentally ingest some surface soils outdoors.

From this information and the data in Table 8, we develop a probability distribution for
the number of days that a child plays outdoors in a typical year as follows.

First, we use concepts and methods routinely used to analyze reliability data (Cox &
Oakes, 1984; Crowder et al, 1991; Lee, 1992). To start, we define the condition of
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"success" as "playing outdoors in warm weather", and we define the event of "failure" as
“the end to playing outdoors due to cold weather."

With these routine definitions, we develop the probability density function (PDF) for the
"time to failure," denoted t and measured in days, in three steps:

* First, we develop S(t), the complementary cumulative distribution function
(CCDF) for the t, the "time to failure," by direct interpretation of the behavior
and the weather data. This curve declines monotonically from S(0) = 1 to
8(365) =0. ’

» Second, we derive F(t), the cumulative distribution function (CDF), for the
“time to failure,” by subtraction: F(t) = 1 - S(t). This curve rises monotonically
from F(0) = 0 to F(365) = 1.

» Third, we derive f(t), the probability density function (PDF) for the "time to
failure,” by differentiating F(t) with respect to time: f(t) = -g—t F(t). The area under
this curve equals 1.

Thus f(t) is the PDF for the number of days in a typical year that a child plays outdoors.

For children, the graph below shows S(t), the CCDF for the time to failure, i.e., the
complementary cumulative probability distribution for the-number of days in a typical
year that a child plays outdoors in the neighborhoods near the industrial property.
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The graph of S(t) for children above plots this information:

On warm days, when T equals or exceeds 70 degF, all children play outdoors.
This corresponds to a plotted point of (t, S(t)) = (86, 1.00).

On cool days, when T declines to 60 degF, 70 percent of the children
continue outdoor activities that culminate in soil ingestion. This corresponds to
plotted point of (t, S(t)) = (143, 0.70).

On cooler days, when T declines to 50 degF, only 20 percent of the children
continue outdoor activities that culminate in soil ingestion. This corresponds to
a plotted point of (t, S(t)) = (196, 0.20).

On cold days, when T declines to 40 degF, only 5 percent of the children
continue outdoor activities that culminate in soil ingestion. This corresponds to
a plotted point of (t, S(t)) = (246, 0.05).

%_On freezing days, when T declines below 32 degF, no children continue

-outdoor activities that culminate in soil ingestion. The children go outdoors,

-but they cannot ingest frozen soils. This corresponds to a plotted point of

(% (t)) (282, 0.00).

plays outdoors in the nelghborhoos near the industrial property.
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For children, the graph below plots f(t) = % F(t), the PDF for the time to failure, i.e., the

probability density for the number of days in a typical year that a child plays outdoors in
the neighborhoods near the industrial property. This random variable has a median
equal to 164.2 days and a mean equal to 165.5 days.
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Using the information in Table 8 for teens, the graph below plots f(t) = % F(t), the PDF

for the time to failure, i.e., the probability density for the number of days in a typical year
that a teen plays outdoors in the neighborhoods near the industrial property. This
random variable has a median equal to 176.7 days and a mean equal to 181.0 days
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Using the information in Table 8 for adults, the graph below plots f(t) =% F(t), the PDF

for the time to failure, i.e., the probability density for the number of days in a typical year
that an adult plays outdoors in the neighborhoods near the industrial property. This
random variable has a median equal to 166.6 days and a mean equal to 168.0 days.
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Appendix E

Exposure Durations for the Neighborhoods Near the Industrial Property

As employees of the US Environmental Protection Agency, Israeli and Nelson (1992)
estimated distributions of the residence times for different groups of US households
based on data published by the Bureau of the Census. Israeli and Nelson report that the
distribution for total residence time is essentially an Exponential distribution with a
different mean value for each different housing group. An Exponential distribution is
completely characterized by its mean value and is highly skewed (i.e., far from
symmetric), with a long tail to the right.

In this report, we accept 49 percent as the fraction of owner-occupied houses in the
neighborhoods near the industrial property (Ecology & Environment, 1995, Letter). From
this, we calculate 51 percent as the fraction of non-owner-occupied houses in the same
neighborhoods.
On a neighborhood- and site-specific basis, we estimate the 90th percentile of the
mixed population distribution using information in the column titled “Average Total
Residence Time, T (years)" of Table IV of Israeli and Nelson (1992).
First, we draw 4,900 realizations from this distribution:

QOwners ~ Exponential (1/11.36 yr)
and 5,100 realizations from this distribution:

Renters ~ Exponential ( 1/2.35 yr).

Thus, we have simulated a mixed population of 49 percent owners and 51 percent
renters.

This mixed distribution has these summary statistics: arithmetic mean = 6.64 yr, 10th

percentile = 0.42 yr; 25th percentile = 1.15 yr; 50th percentile = 3.20 yr; 75th percentlle
= 8.11 yr; and 90th percentile = 18.00 yr.
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This graph shows the histogram for this mixed distribution.
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Abstract

For a chemical which does not have a source inside a house, the ratio of its dust
concentration indoors to its soil concentration outdoors is equal to the fraction of house
dust which is composed of soil. To estimate the fraction of soil in house dust, we
compiled ratios of the concentrations of a chemical in dust and soil from the scientific
literature. We find that a LogNormal distribution fits the data extremely well. This
distribution is suitable for use in public health risk assessments for single-family homes

in temperate climates.

Introduction

Ingestion of indoor dust is a significant exposure pathway for children in residential
settings (Calabrese and Stanek, 1992, Dust; Stanek and Calabrese, 1992; Chuang et
al., 1995; Fergusson and Kim, 1991). In one study, Stanek and Calabrese (1992)
demonstrated that almost 50 percent of the soil ingested by children came from
ingestion of soil in indoor dust. Measurements of contaminant concentrations in dust are
difficult to perform and uncommon in human health risk assessment studies.
Consequently, there is a need for a method to estimate the concentration of a chemical

in dust from the concentration of that chemical in the soil outside the house.
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The composition of indoor dust differs strongly from the composition of the soil outside a
house. Only a fraction of dust is composed of soil which has been carried into the house
(e.g., on shoes). The remainder consists of dust particles derived from material inside
the house such as lint from carpets and clothes, human hair and skin, pet hair and skin,
household plant material, pieces of paper, paint chips, wood chips from fumiture, pieces
of insulation, flakes of construction materials, bacteria, viruses, allergens and insects
(e.g., dust mites) (Thatcher and Layton, 1995). Some indoor dust is also derived from

particles carried through open windows by the wind.

Because indoor dust is a mixture of particles generated inside the house (“particles”)
and soil carried into the house on clothing, the concentration of a cﬁemical in indoor
dust must fall between its concentration in these two media. If the concentration of the
chemical in the patticles is negligible compared with its concentration in soil, the dust
concentration of the chemical can be predicted from the physical dilution of the soil by
particles. We define chemicals for which the particle concentration is negligible

compared to the soil concentration as “conservative tracer chemicals”. .

Assuming that the soil carried into the house has the same chemical and physical
properties as the outdoor soil, the ratio of the dust concentration to the soil
concentration for conservative tracer chemicals is equal to the fraction of the household
dust which consists of soil. For convenience, we define this ratio as the “transfer
coefficient” (TC) of an chemical (Eqn 1).

_ Cdust
TC = Ceoi Eqn 1

where C,4 is the dust concentration of the element with units of mg/kg and Cs is the
soil concentration of the element with units of mg/kg. The TC is dimensionless. For

conservative tracer chemicals, the maximum value for the TC, 1, represents dust
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composed entirely of soil. The minimum value for the TC, 0, can only occur for dust
which does not contain any soil. The TC for an element can only exceed a value of 1 if

there are sources of that element from material inside the house.

We searched the scientific literature for studies in which the concentration of a chemical
in both the dust and the soil was measured. To estimate the fraction of soil in house

dust, wé calculated the TC for all data pairs (Cqyst. Csont) Which met the criteria for being
conservative tracer chemicals as discussed below. We model the variability in the value

of the TC by representing this ratio as a distribution.

Selection of Data for Conservative Tracers

We compiled data pairs (Cqust, Csoif) for rare earth elements (Binder et al., 1986; Bowen,
1979, Calabrese et al., 1989; Calabrese and Stanek, 1992, Dust; Calabrese and
Stanek, 1992, Pica; Davis et al., 1990; Fergusson et al., 1986; Fergusson and Kim,
1991), heavy metals (Hartwell et al., 1983; Hawley, 1985; Lioy et al., 1992; Stem, 1994),
several pesticides (Camann and Lewis, 1993; Simcox et al., 1995), and some organic
compounds (Chuang et al., 1995). All the studies were conducted for single-family

homes in temperate climates.

For each data pair, we determined whether it was a conservative tracer chemical based
on three criteria. First, the data pair must be for one of the soil-derived elements
proposed by Fergusson et al. (1986): halfnium (Hf), thorium (Th), scandium (Sc),
samarium (Sm), cerium (Ce), lanthanum (La), manganese (Mn), sodium (Na),
potassium (K), vanadium (V), aluminum (Al) and iron (Fe). Fergusson et al. (1986)
showed that these elements do not have any sources or sinks within houses other than
soil. Other chemicals, such as lead (Pb), arsenic (As), chromium (Cr), polycyclic
aromatic hydrocarbons (PAHSs), and some pesticides, can have higher dust

concentrations than soil concentrations due to sources inside the house (e.g., lead
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paint, tobacco smoke) (Hartwell et al., 1983; Lioy et al., 1992; Chuang et al., 1995;

Simcox et al., 1995). Therefore, these compounds are not expected to behave as
conservative tracer chemicals. Second, the mean dust and soil concentrations for the
element must be significantly different at the p < 0.05 confidence level. Third, the dust
concentration must be less than the soil concentration for the element. In the'org_/, the TC
can reach a maximum value of one for pure soil. In reality, it would be impossible for a
conservative tracer chemical to have a TC value of one because of the large fraction of

organic material which is always present in indoor dust (Rothenberg et al., 1989).

Table 1 shows the data pairs that meet these criteria and their associated TCs. Most of
the values in Table 1 are mean values except those from Fergusson and Kim (1991)
which are median values. We think the insights gained from including the median values
outweigh the uncertainties introduced by their inclusion. it is no—t possible to test the
second criteria fof the data from Fergusson and Kim (1991) because only the median
values for dust and soil concentrations are shown in this article. The values in Table 1

rely on studies with 11 < N < 101 data points.

\

Estimation of the Transfer Coefficient Distribution

By comparing the histogram of the TC values in Table 1 to Normal, Beta, and
LogNomal distributions, we conclude that the LogNomal distribution represents the
variability in the TC Bxceedingly well. In Figure 1, In[TC] has been plotted versus zscore.
The solid line corresponds to a perfect LogNommal distribution while the points are the
data from Table 1. All the points are clustered close to this line (r2 = 0.9729) which
indicates that the data are well described by a LogNormal distribution. Ott (1995) notes
that dilution processes tend to produce concentration distributions which are LogNormal
in character. The fact that the values of TC are distributed LogNormally is consistent
with Ott's observation because the variability in the TC results from the dilution of soil by

particles.

25 April 1996 Page 4 © Alceon, 1996
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We parameterize the LogNormal distribution as Eqn 2.

IC - exp[ Normal(y, o) ] Eqn 2

which is identical to
In[TC] ~ Normal(p, o) Eqn 3

where TC is a LogNormal random variable, p is the arithmetic mean of the Normal
random variable In[TC], and ¢ is the arithmetic standard deviation of Normal random
variable In[TC]. By fitting a line to the points in Figure 1 using Mathematica™, we
estimate that fi + se =-0.8767 £0.0122 and G + se = 0.3663 + 0.0125. Figure 2 shows
the LogNormal probability density function (PDF) described by these parameters. This
figure illustrates the properties of TC. First, the minimum value for TC is 0. Second, the
mode of TC is 0.3639. Third, the median of TC is 0.4162. Fourth, the arithmetic mean
and arithmetic standard deviation of TC are 0.4450 and 0.1687, respectively. Figure 3
shows the cumulative distribution function (CDF) for this fitted distribution with the data-
from Table 1 superimposed on the graph. The PDF and CDF are altemative ways to

represent the same information.

Even though a LogNormal distribution is defined from 0 to infinity, the probability of
having a TC value greater than 1 is less than 1 percent given these fitted parameters.
In practice, we recommend truncating the distribution of TG at a maximum of 1 because
TC values 21 are only possible for non-conservative tracer chemicals. Therefore,
truncating the distribution at a maximum of 1 will change the distribution by only a

negligible amount.

25 April 1996 Page 5 © Alceon, 1996
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Discussion
The fraction of soil in house dust is a random variable which closely follows a
LogNormal distribution with an arithmetic mean of 0.445 and an arithmetic standard
deviation of 0.1687. The arithmetic mean and arithmetic standard deviation In[TC] are
-0.8767 and 0.3663, respectively. This parametric distribution is suitable for use in
human health risk assessments for single family homes in temperate climates. These
findings are consistent with the conclusions of Calabrese and Stanek (1992, Dust) that
the mean fraction of indoor dust originally derived from soil is 0.313. Therefore, for a
conservative tracer chemical, its concentration in house dust is expected to be less than

half its concentration in the soil outside the home.

In this paper, we compare the bulk chemical compositions of soil and indoor dust
because these were the only properties which were measured in the original studies. If
the data were available, it would be more accurate to compare the chemical
compositions of the two media for each particle size. Estimating the TC in this manner
would eliminate the potentially confounding effect that some particle sizes may be

preferentially transported into houses relative to other sizes.
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Table 1: Estimated Transter Coefficients

Element Dust Concentration Soil Concentration Transfer Coefficent Source
(mg/kg) (mg/kg)
Al 19,000.0 66,000.0 0.2879 3
Al 25,000.0 71,000.0 0.3521 2,5
Al 23,900.0 55,600.0 0.4299 1
Al 33,600.0 66,600.0 0.5045 4
Al 47,200.0 54,000.0 0.8741 4
Ce 23.6 52.3 0.4512 1
Ce 25.0 50.0 0.5000 2,5
Fe 10,000.0 40,000.0 0.2500 2,5
Fe 10,200.0 20,000.0 0.5100 1
Ht 2.0 6.0 0.3333 2,5
Hf 2.1 4.1 0.5146 1
K 12,600.0 25,000.0 0.5040 1
K 13,000.0 14,000.0 0.9286 2,5
La 100 400 0.2500 2,5
La 11.9 27.4 0.4343 1
Mn 200.0 1,000.0 0.2000 2,5
Mn 207.0 325.0 0.6369 1
Na ., 11,800.0 18,600.0 0.6344 1
Sc 29 6.8 0.4240 1
Sc 3.0 .70 0.4286 2,5
Sm 1.2 45 0.2667 2,5
Sm 1.2 3.9 0.3128 1
Th 3.0 9.0 0.3333 2,5
Th 3.4 8.2 0.4172 1
v 30.0 90.0 0.3333 2,5
v 30.4 66.0 0.4606 1
Sources

1. Fergusson et al., 1986

2. Fergusson and Kim, 1991
3. Davis et al., 1990

4. Calabrese et al., 1989

5. Bowen, 1979
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INTRODUCTION

To estimate the potential risk to human health that may be posed by the presence of chemical
compounds in soil or other environmental media, it is first necessary to estimate the human
exposure dose of each compound. The exposure dose is similar to the administered dose or
applied dose of a laboratory experiment. The exposure dose is then combined with an estimate
of the toxicity of the compound to produce an estimate of risk posed to human health.

The estimate of toxicity of a compound, termed the dose-response value, can be derived from
human epidemiological data, but it is most often derived from experiments with laboratory
animals. The dose-response value can be calculated based on the administered dose of the
compound (similar to the human exposure dose) or, when data are available, based on the
absorbed dose, or internal dose, of the compound.

In animals, as in humans, the administered dose of a compound is not necessarily completely
absorbed. Moreover, differences in absorption may exist between laboratory animals and"
humans, as well as between different media and routes of exposure. Therefore, it is often
inappropriate to directly apply a dose-response value to the human exposure dose. In many
cases, a correction factor in the calculation of risk is needed to account for differences between
absorption in the dose-response study and absorption likely to occur upon human exposure to a
compound. Without such a correction, the estimate of human health risk could be over- or
under-estimated.

This correction factor is defined here as the absorption adjustment factor, or AAF. The AAF is
used to adjust the human exposure dose so that it is expressed in the same terms as the doses
used to generate the dose-response curve in the dose-response study. The AAF is the ratio
between the estimated absorption factor for the specific medium and route of exposure, and the
known or estimated absorption factor for the laboratory study from which the dose-response value
was derived.

In some cases, AAFs can be derived from data within a single experiment if an appropriate
measure of absorption is compared between different routes of administration and/or sample
matrices. In other cases, a single experiment may quantitate total fractional absorption for only
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one matrix and route of exposure. AAFs can be derived from such experiments if coupled with
data from other experiments that quantitate the absorption from the route and matrix used in the
dose-response study. In this case, the AAF is derived using the following equation:

AAF = (fraction absorbed from the environmental exposure)/
(fraction absorbed in the dose-response study).

The use of an AAF allows the risk assessor to make appropriate adjustments if the efficiency of
absorption between environmental exposures and experimental exposures is known or expected
to differ because of physiological effects and/or matrix or vehicle effects. Absorption adjustment
factors can be less than one or greater than one. If the absorption from the site-specific exposure
is the same as absorption in the laboratory study, then the AAF is 1.0. An AAF of 1.0 does not
indicate that absorption is 100%. It indicates that absorption is known or estimated to be the
same as that in the dose-response study.

EPA explicitly discusses the appropriateness of using absorption/bioavailability factors in the
Guidelines for Exposure Assessment (EPA, 1992a). For instance, EPA states:

The applied dose, or the amount that reaches exchange boundaries of the skin, lung, or
gastrointestinal tract, may often be less than the potential dose if the material is only
partly bioavailable. Where data on bioavailability are known, adjustments to the potential
dose to convert it to applied dose and internal dose may be made.

This may be done by adding a bioavailability factor (range: 0 to 1) to the dose equation.
The bioavailability factor would then take into account the ability of the chemical to be
extracted from the matrix, absorption through the exchange boundary, and any other
losses between ingestion and contact with lung or gastrointestinal tract.

The Guidelines for Exposure Assessment discuss the issues of absorption and bioavailability
throughout the document, indicating EPA's current understanding that the inclusion of properly
documented absorption adjustment factors is a scientifically appropriate and important aspect of
the risk assessment process. The Absorption Adjustment Factors derived here take into account
matrix-specific bioavailability as well as knowledge of PAH pharmacokinetics. These AAFs
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should be used in the calculation of the Average Daily Doses (ADD) that are necessary to
quantitatively estimate potential risk to human health.

In this paper, the route of exposure and the experimental matrix (diet, drinking water, corn oil
gavage, etc.) used in the experimental studies from which the relevant dose-response value was
derived are summarized for the polycyclic aromatic hydrocarbons (PAHs). In addition, the
scientific literature on the absorption and bioavailability of PAHs has been reviewed for the
relevant routes of exposure and matrices. Based on these data, scientifically defensible oral-soil
and dermal-soil AAFs have been derived. The information and methods used to derive these
AAFs are described below.

Although it is possible in theory, absorption experiments in humans that are suitable for AAF
derivation have not been executed. Thus, AAFs are derived from animal studies. Because AAFs
can be derived from multiple scientific studies using different animals species and strains and
different experimental conditions, there is scientific uncertainty concerning the true AAF for the
human exposure situation. This uncertainty can be incorporated into the risk assessment process
by deriving distributions for the relevant AAFs. Accordingly, oral-soil and dermal-soil AAFs for
PAHs are derived here both as point estimates for deterministic risk assessments and as
distributions for probabilistic risk assessments.

ABSORPTION FROM THE DOSE-RESPONSE STUDIES

Potentially carcinogenic PAH are routinely evaluated using the comparative potency approach
described in EPA (1993). With this approach, all potentially carcinogenic PAH are assessed in
terms of their benzo(a)pyrene toxic equivalent concentrations, and EPA's cancer slope factor for
benzo(a)pyrene is used. .

Derivation of Cancer Slope Factor for Benzo(a)pyrene

The risk assessment of potentially carcinogenic PAHs is performed using the oral cancer slope
factor (CSF) for benzo(a)pyrene (B(a)P). The oral CSF for B(a)P (7.3 (mg/kg-day)’) is the
geometric mean of four slope factors derived from two rodent feeding studies: Neal and Rigdon
(1967) and Brune et al. (1981). In the first study, CFW mice were dosed with B(a)P in their
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laboratory chow (diet). The diet was prepared by dissolving benzo(a)pyrene in benzene, mixing
with wheat flour, evaporating the benzene and mixing the flour-benzo(a)pyrene mixture with
laboratory chow pellets. In the second, Sprague Dawley rats were also dosed with B(a)P in their
laboratory chow (diet).

Gastrointestinal Absorption in Dose-Response Study

Absorption of B(a)P from food has been shown to be high in both humans and rodents by several
researchers. Many articles on absorption were reviewed. However, studies that used
inappropriate scientific methods were rejected for AAF derivation. For instance, studies that
measured total radiolabel in the feces do not yield useful absorption information, because B(a)P
metabolites are known to be excreted into bile (see, for instance, Chipman et al., 1981a, 1981b;
Bowes and Renwick, 1986).

As an example, data are presented in a paper by Chang (1943) on fecal excretion of
benzo(a)pyrene and other PAH. This paper cannot be used to estimate gastrointestinal absorption
of PAH, because the gravimetric method used is nonspecific and does not distinguish between
unchanged PAH and PAH metabolites. A paper by Flesher and Syndor (1960) is also deficient
for AAF derivation, because total tritium is measured in feces after oral dosing of rats with *H-3-
methylcholanthrene. This method also does not distinguish between unabsorbed PAH and
absorbed and metabolized PAH excreted into the bile and feces.

Other studies are not useful because they only define a small fraction of a PAH's total
disposition. For instance, in a study by Rees et al. (1971), benzo(a)pyrene was given to rats by
stomach tube and the PAH was measured in the lymphatic duct. While the presence of B(a)P
in the lymph indicates that absorption occurred, the experiment is not quantitative. ~Similarly,
Foth et al. (1988) measured benzo(a)pyrene absorption in the rat after a continuous infusion into
the duodenum by measuring B(a)P in the atrial blood and bile. In this case, the conditions of
the experiment are unnatural, and the experiment does not account for a total mass balance of
B(a)P. Other studies were rejected for similar reasons. The following principal studies are those
in"which useful absorption information can be gleaned.
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Hecht et al. (1979)

Hecht and coworkers (Hecht et al., 1979) fed B(a)P to both humans and F-344 rats and measured
the unchanged B(a)P in the feces to obtain an estimate of the amount of the compound absorbed.
Because unchanged B(a)P in the feces can be due to absorbed material that is excreted unchanged
in the bile, these studies reveal the minimum amount of B(a)P that was absorbed. It is known,
however, that B(a)P is extensively metabolized. Thus, these estimates of absorption are valid for
AAF derivation.

For rats, at least 87% of the B(a)P was absorbed from a low single dose in peanut oil (0.037
mg/kg). Minimum absorption from medium and high doses (0.37 mg/kg and 3.7 mg/kg) were
92.2% and 94.4%. The mean absorption of B(a)P in peanut oil in rats was 91.2% (n=30). This
value was used in AAF derivation.

When rats were fed a single dose of charcoal-broiled hamburger containing B(a)P (0.002 mg/kg
body weight), at least 89% was absorbed (n=10). In humans, a high percentage of B(a)P present
in charcoal-broiled meat was also absorbed (0.0001 mg/kg body weight, assuming 70 kg),
because no unchanged B(a)P was detected in the feces. Assuming that B(a)P was present in
feces at 1/2 the detection limit, the minimal absorption is 98.8% (n=8). This study indicates that
there is no significant difference in absorption between two dietary vehicles in rats. That is,
absorption of B(a)P from peanut oil and meat was essentially the same. The results with rats and
humans also indicates that there is no major difference in the gastrointestinal absorption of B(a)P
between rats and humans. Both of the above values were used in AAF derivation.

Mirvish et al. (1981)

Mirvish and co-workers (Mirvish et al., 1981) fed B(a)P to Syrian golden hamsters in their diets
and measured the amount of unmetabolized B(a)P in their feces to determine the efficiency of
absorption from the gastrointestinal tract. B(a)P was dissolved in corn oil, and the corn oil was
added to a commercial rodent chow by two different methods. Animals were treated with B(a)P
in the diet for 7 to 10 days before samples were collected to give adequate time to reach steady-
state PAH concentrations in the feces and gastrointestinal tract contents.
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The percentage of fecal excretion of unchanged B(a)P remained relatively constant (94.3% to
98.0%) as its concentration in commercial diet was varied over a wide range (0.16 mg/kg to 5.5
mg/kg). Absorption efficiency was not dose-dependent. The minimal gastrointestinal absorption
of B(a)P was found to be 96.7% for the commercial chow using preparation method I (average
of results from seven experiments at different dose levels; eleven animal groups, each containing
3-5 hamsters) or 98% for the commercial chow using preparation method II (one experiment; -
four animal groups, each containing 3-5 hamsters, 1.6 mg/kg). These two values (96.7% and
98%) were used in AAF derivation.

3-methyl cholanthrene (3-MC) absorption was also studied in hamsters. 3-MC (1.7 mg/kg) was
dissolved in corn oil and added to a semisynthetic diet consisting of corn oil, corn starch,
vitamin-free casein, and alphacel. Minimum gastrointestinal absorption was found to be 93.8%
in four animal groups containing 3-5 hamsters each. This value is also used in AAF derivation.

Other experiments demonstrated that B(a)P was absorbed slightly more efficiently from
semisynthetic diets than from commercial rodent diets. Addition of corn oil to the hamsters'
semisynthetic diets had little effect on the fecal excretion of unchanged B(a)P, and thus its
gastrointestinal absorption. Addition of bran to the semisynthetic diets caused a slight lowering
of gastrointestinal absorption.

Rabache et al. (1985)

Rabache and co-workers (Rabache et al., 1985) fed B(a)P to male Wistar rats in their diets for
22 days and measured the amount of unmetabolized B(a)P in their feces to determine the
efficiency of absorption from the gastrointestinal tract. B(a)P was dissolved in soy oil and mixed
with the synthetic ration, which was comprised of 10% soy oil. Young rats were given 1 g
B(a)P/kg body weight, and adult rats were given 5 g/kg. The minimal gastrointestinal absorption
of B(a)P was found to be 88.7% for young rats (n=8) and 99.6% for adult rats (n=12). Both of
these values are used in AAF derivation.
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Withey et al. (1991)

Withey and co-workers (Withey et al., 1991) administered pyrene by stomach tube to male
Wistar rats in an aqueous emulsion and measured the amount of C-14 radiolabel in the blood
over time to make an estimate of the traditional pharmacokinetic parameter "bioavailability". A
single dose of pyrene was given to 4 groups of six animals at a concentration ranging from 4-15
mg/kg as a solution in 20% Emulphor/80% physiological saline. Radiolabeled pyrene was also
given intravenously for comparison. "Bioavailability” was defined as the area of the blood level-
time curve of radiolabel over a specified time period after oral dosing (0-8 hours) divided by the
corresponding area of the curve for intravenous dosing.

"Bioavailability" was found to vary from 65% to 84% depending on dose level. This
pharmacokinetic parameter has its basis in classical drug studies where the circulating blood level
of the parent (unmetabolized) drug is of primary interest. However, this parameter does not
provide an optimal estimate of a chemical's gastrointestinal absorption, because the fraction of
the chemical or its metabolites that is bound to tissues is not properly counted.

For this reason, the urinary excretion data over 6 days were also used to derive an estimate of
absorption for each group. Absorption was estimated as the fraction of total radiolabel excreted
in the urine after oral dosing divided by the fraction excreted after intravenous dosing. Because
the fraction excreted in the urine at day 6 post-dosing was slightly higher at every dose level for
oral dosing compared to intravenous dosing, the estimates of gastrointestinal absorption are 100%
for all four dose groups.

For each dose group, the blood level estimate of "bioavailability" was averaged with the urinary
estimate of gastrointestinal absorption to derive an estimate of gastrointestinal absorption. These
estimates are: 92%, 82.5%, 86.5%, and 87% for doses ranging from 4-15 mg/kg. The average
of these four estimates (87%) is used in AAF derivation.
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Grimmer et al. (1988)

Grimmer and co-workers (Grimmer et al., 1988) administered chrysene by stomach tube to
unfasted male Wistar rats in a solution of 33% dimethylsulfoxide and 66% corn oil. Eight rats
weighing 200-250 grams received a single dose of 50 ug chrysene. Assuming an average weight
of 225 g, the dose was 0.22 mg/kg. Feces and urine were collected for four days. Unchanged
chrysene and specific metabolites were analyzed. The fraction of the unchanged chrysene in the
feces was determined. This serves as an estimate of minimal gastrointestinal absorption.
Average absorption for the eight rats was 86.9%. This value was used in AAF derivation.

Bartosek et al. (1984)

Bartosek and co-workers (Bartosek ef al., 1984) administered benz(a)anthracene, chrysene, or
triphenylene to female CD-COBS rats by stomach tube in an aqueous emulsion of 10% Pluronic
F68 emulsifier and 90% olive oil. Animals were fasted for 24 hours prior to being given a single
oral dose of the PAH. Each group consisted of 3-5 rats weighing 150-170 g. PAH were given
at single doses of 11.4 and 22.8 mg/ animal, which corresponds to 71.3 mg/kg and 142.5 mg/kg,
assuming an average weight of 160 g. Rats were allowed access for food 3 hours after dosing.
The fraction of administered dose of the unchanged PAH recovered in the feces after 72 hours
was taken as an estimate of the minimal absorption. Results were 94% for benz(a)anthracene,
75% for chrysene, and 97% for triphenylene. These three values were used in AAF derivation.

Summary of Absorption Data for Dose-Response Studies

The 13 data points shown in Table 1 are averaged to derive a point estimate of the
gastrointestinal absorption of B(a)P and other PAH in the dose-response studies from which the
cancer slope factor for B(a)P and the RfDs for various noncarcinogenic PAH were derived. This
value is 92%.

Table 1 demonstrates that gastrointestinal absorption of PAHs given in oil vehicles or in the diet
is generally high. While there is some variability in the data, no consistent trend is apparent that
would lead one to conclude that absorption of one PAH differs significantly from another.
Accordingly, all of the data is merged here to represent the absorption of all PAHs of interest.
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However, each data point in a study was not given equal weight in deriving the final estimate
of oral absorption in the dose-response studies. For instance, in the Mirvish ef al. study the
96.7% value represents the average of results from seven experiments at different dose levels.
There were eleven animal groups, each containing 3-5 hamsters. Thus, this value represents
experiments with 33-55 animals. The 98% value represents one experiment at one dose group.
There were four animal groups, each containing 3-5 hamsters. Thus, this data point represents
12-20 animals.

There are many ways to summarize such a large and diverse set of experimental results. Table
2, however, demonstrates that the resulting estimate of absorption in the PAH dose-response
studies is not particularly sensitive to the manner of summarizing the available data.

DERIVATION OF ORAL-SOIL AAF FOR POLYCYCLIC AROMATIC
HYDROCARBONS (PAH)

Three studies were identified in which the gastrointestinal absorption of PAHs was measured
from a soil matrix. These include Goon et al. (1991), Rozett et al. (1996), and Weyand et al.
(1996). Each of these studies is discussed below.

Rozett et al. (1996)

Rozett et al. (1996) studied the bioavailability of pyrene from manufactured gas plant (MGP)
residue (coal tar) by comparing the urinary pyrene metabolite levels in animals receiving pyrene
as pure MGP residue in their diet to animals receiving pyrene as MGP contaminated soil in their
diet. The contaminated soil was aged composite soil from MGP sites. It was fractionated into
seven particle size ranges from 1 mm to < 0.150 mm. Soil was added to powder diets from PMI
Feeds, Inc. (rodent laboratory diet #5001) (20% soil / 80% powder diet). Pure MGP residue was
added to gel diets from Bio-Serv (rodent basal gel diet) (0.003%, 0.03%, 0.1%, & 0.3% coal tar).
Groups of female CD1 mice were fed soil or pure MGP residue for 15 days. Urine was collected
on day 15. The level of pyrene metabolites (1-hydroxypyrene, 1-hydroxypyrene glucuronide
conjugates, and 1-hydroxypyrene sulfate conjugates) were determined by HPLC using
fluorescence detection (Singh et al., 1995).
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"Bioavailability” is defined by the authors as the amount of pyrene and metabolites excreted in
the urine over 24 hours on day 15 divided by the amount of pyrene ingested on day 15 x 100.
The amount of pyrene and metabolites excreted into the urine as a fraction of the amount
ingested in the last 24 hours is not, itself, a direct measure of bioavailability. It is also not a
quantitative measure of total absorption of pyrene from the diet, because PAH and PAH
metabolites are efficiently excreted into the feces via the biliary system. However, the level of
pyrene and its metabolites in urine on day 15 gives a measure of the steady state level of pyrene
excretion. Any pyrene or pyrene metabolite found in the urine necessarily derived from pyrene
that was absorbed in the gastrointestinal tract. Because the term bioavailability has a very
specific meaning in the fields of toxicology and risk assessment, the metric used by the authors
is here renamed "fractional urinary excretion." However, the ratio of "fractional urinary
excretion" between study groups is a good measure of relative bioavailability, as will be shown
below.

As shown in Table 3, "fractional urinary excretion" of pyrene from MGP residue (coal tar) added
to the diet varied from 12.8% to 24.1% depending on the dose level. As shown in Table 4,
"fractional urinary excretion" of pyrene from MGP residue-containing soil varied from 1.7% to
14.8% depending on the size fraction of the soil sample. In addition, "fractional urinary
excretion” of pyrene from unfractionated soil (< 1 mm particle size) was reported to be 6%.

The ratio of "fractional urinary excretion" from MGP contaminated soil to "fractional urinary
excretion" from pure MGP residue as a dietary additive is a direct estimate of the oral-soil AAF
(which is a measure of relative bioavailabilty between pyrene in soil and pyrene in food). Itis
a measure of the degree to which the soil matrix increases or decreases the absorption of pyrene
compared to pyrene in the diet. The AAF estimates presented in Table 6 were derived by taking
the ratios of "fractional urinary excretion" in Table 4 to the appropriate value from Table 3, based
on the dose of pyrene.

Weyand et al. (1996)

Weyand et al. (1996) studied the bioavailability of pyrene from manufactured gas plant (MGP)
residue (coal tar) by comparing the urinary pyrene metabolite levels in animals receiving pyrene
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as methylene chloride extracts of MGP contaminated soil in their diet to animals receiving pyrene
as MGP contaminated soil in their diet. The two contaminated soil samples were aged soils from
MGP sites. They were sieved to a particle size range of less than or equal to 0.150 mm. Soil
was added to powder diets from PMI Feeds, Inc. (rodent laboratory diet #5001) (20% soil / 80%
powder diet). MGP contaminated soil extracts were added to gel diets from Bio-Serv (rodent
basal gel diet) so that the same amount of pyrene was present as in the soil/diet groups. Groups
of female B,C,F, mice were fed soil or organic extract for 14 days. Urine was collected on day
14. The level of pyrene metabolites (1-hydroxypyrene, 1-hydroxypyrene glucuronide conjugates,
and 1-hydroxypyrene sulfate conjugates) were determined by HPLC using fluorescence detection
(Singh et al., 1995).

As above, "fractional urinary excretion” is defined as the amount of pyrene excreted in the urine
over 24 hours on day 15 divided by the amount of pyrene ingested on day 15 x 100. The
amount of pyrene excreted into the urine is not, itself, a direct measure of total absorption of
pyrene from the diet, because PAH are efficiently excreted into the feces via the biliary system.
However, the level of pyrene and its metabolites in urine on day 15 gives a measure of the
steady state level of pyrene excretion.

As shown in Table 5, the "fractional urinary excretion" of pyrene from soil #1 was 6.2% and
from soil #2 was 1.7%. The "fractional urinary excretion" of pyrene from the organic extract of
soil #1 was 17.2% and from soil #2 was 16.1%.

The ratio of "fractional urinary excretion" from MGP contaminated soil to "fractional urinary
excretion" from an extract of MGP contaminated soil added to diet is a direct estimate of the
oral-soil AAF. It is a measure of the degree to which the presence of soil increases or decreases
the absorption of pyrene from the diet. The AAF from soil #1 was 36% (6.2%/17.2% x 100).
The AAF from soil #2 was 11% (1.7%/16.1% x 100). This study clearly shows that pyrene in
aged soil is absorbed in the gastrointestinal tract to a lesser degree than is pyrene added to rodent
food as an organic extract.

11
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Goon et al. (1991) \

Goon, et al. (1991) studied the bioavailability of benzo(a)pyrene administered orally as the pure
chemical or as B(a)P adsorbed onto soil particles. Additional information about the study was
obtained directly from the authors (Goon et al., 1996). Male Sprague-Dawley rats were gavaged
with B(a)P mixed with '“C-B(a)P in solution [0.5% Tween 80 (v/v in saline)] (1.0 pmol B(a)P/kg,
25 uCi/kg) or the equivalent dose adsorbed onto a clay-based soil or a sand-based soil. The soils
consisted of 2.5 g solid’kg containing 100 mg/kg B(a)P. All animals received 7.5 mL of 0.5%
Tween 80 (v/v in saline).

Venous blood samples were collected from the retro-orbital plexus at predetermined times (0.5,
1,2, 4, 8,12, 24, 48, 72, 96, 120, 144, and 168 hours), and excreta were collected continuously
over 24-hour intervals. After 168 hours, animals were euthanized and tissues collected for
analysis. Total radioactivity was measured by liquid scintillation in blood, urine, feces, and
tissues.

The sandy soil was classified as a loam which was very low in organic content, 0.04%. It
contained 47% sand, 41% silt, and 12% clay. The pH was 6.5, and the cation exchange content
was 0.6 meq/100 g. The clay-based soil was classified as a clay with low organic content,
1.35%. It contained 6% sand, 18% silt, and 76% clay. The pH was 7.0 and the cation exchange
content was 45.65 meq/100 g. The sandy soil was ground and sonic sifted. The clay-based soil
was dried and passed through a Brickman ultra-centrifugal mill. In both cases, the particles size
was small, <100 um. Both soils were washed twice with methylene chloride and dried before
use. This destroyed any microbial activity that may have existed in the soils.

B(a)P and "“C-B(a)P were added in acetone to soils. The acetone was evaporated, leaving soils
that were 100 ppm in B(a)P and 10 uCi/g in radiolabel. Animals were administered the soil-
adsorbed B(a)P at various time intervals after the soil and the B(a)P were mixed: 1 day, 7 days,
30 days, 6 months and one year. Animals were fasted for 12 hours prior to dosing. Two hours
after dosing, Purina Rodent Chow 5001 and water were available ad libitum.

Relative bioavailability was measured by comparing the area under the blood curve (AUC) for
total radiolabel over the entire 168 hour experimental period during which blood B(a)P levels
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were measured. Radiolabel in the blood represents a fraction the B(a)P that was absorbed in the
gastrointestinal tract, including parent B(a)P and metabolites.

The use of AUC measurements is a classic approach in drug pharmacology where systemic
bioavailability is defined as the blood AUC after an intravenous dose divided by the AUC after
an oral dose. In the case of drugs, the amount of parent drug circulating in the blood over a long
period of time is of primary interest, because, in most cases, first pass metabolism of the drug
in the liver reduces the drug efficacy. Metabolites are inactive and are excreted. Thus, total
blood levels of parent drug is of greater interest than is drug plus metabolites.

This same concern is not relevant for the risk assessment of PAHs, such as B(a)P, because B(a)P
is not direct acting. No toxic effects are manifested by the parent, unmetabolized B(a)P. Instead,
metabolism is required for toxicity. It is the metabolites of B(a)P and other PAH that bind to
cellular macromolecules, such as DNA, and cause adverse effects in various tissues. Metabolism
of PAHs occurs in all tissues, and orally administered B(a)P has caused tumors in laboratory
animals in various tissues, including stomach, lung, esophagus, larynx, and others. B(a)P
metabolism is also multistepped. In order for the B(a)P diol epoxide, the putative mutagenic
metabolite, to be formed, several metabolic conversions involving several enzymes must occur.

Thus, in some cases the toxic metabolite in a distant tissue, such as the lung, is caused by a
B(a)P molecule that was absorbed through the gastrointestinal tract, was not metabolized in the
liver, circulated through the blood, and was metabolized in several steps in the lung. In other
cases, the toxic lung metabolite was formed by a molecule that was absorbed though the
gastrointestinal tract, was metabolized to an intermediate metabolite in the liver, and circulated
through the blood as a B(a)P metabolite, and was metabolized several more times in the lung to
a toxic metabolite.

In addition, B(a)P and B(a)P metabolites excreted in the bile are known to be reabsorbed in the
gastrointestinal tract by a process known as enterohepatic recirculation (Chipman et al., 1981).
Thus, some B(a)P metabolites are known to be excreted into the bile and the gastrointestinal
tract. When present in the gastrointestinal tract parent B(a)P can be reabsorbed. In addition,
conjugated metabolites, such as glucuronide, sulfate, and glutathione metabolites can be de-
conjugated by enzymes residing in bacteria present naturally in the gastrointestinal tract. After
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de-conjugation, the primary metabolite can and is reabsorbed. After reabsorption, it can travel
to a distant tissue via the systemic circulation and cause damage.

Thus, for B(a)P and other PAHs, the circulating blood level of just the parent compound is not
a relevant dose metric. Instead, the total B(a)P dose including parent B(a)P and metabolites is
the critical parameter to measure. This is because some metabolites are directly toxic to distant
tissues, some metabolites are metabolic precursors of secondary metabolites that are toxic to
distant tissues and can be formed therein, and some metabolites can be excreted and reabsorbed
and can later cause damage in distant tissues, including the gastrointestinal tract itself.

While the total blood radiolabel AUC from 0-168 hours does not define the fraction of the
administered B(a)P that was absorbed in an animal or a treatment group, the ratio of AUC
measurements for two treatment groups administered the B(a)P by the same route of exposure
in an excellent measure of relative bioavailability between the two treatment groups.

For the clay-based soil, relative bioavailability was 49-59% for the soils that were aged from 1-30
days. For clay-based soils aged 6 months and one year, the relative bioavailability was 39% (see
Table 6). For the sand-based soil, relative bioavailability was 67-70% for the soils that were
aged from 1-30 days. For clay-based soils aged 6 months and one year, the relative
bioavailability was 54% and 62%, respectively (see Table 6).

The above data show that reduction in PAH bioavailability due to soil adsorption is a time
dependent phenomenon. This result is consistent with other studies on chemical adsorption to
soil. Because the PAH compounds of interest in most soil risk assessments were released to the
soil environment many years ago, the results for the 6 month and one year aged soils are used
for AAF derivation. These results are 38.6% for clay-based soil and 58.3% for sand-based soil.

These values represent "relative bioavailability” compared to the control animals in which the
B(a)P was administered as a solution. They are not direct estimates of gastrointestinal absorption
in the soil-treated animals and they are not direct estimates of AAFs. Accordingly, the values
must be modified before they can be used to derive AAFs. As shown below, the relative
bioavailability value must be multiplied by the absorption in the control animals:
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Absorption from soil = Relative Bioavailability x Absorption from solution

The Goon et al. (1991) study did not measure total B(a)P absorption in the control animals which
received B(a)P in solution. However, four of the absorption estimates presented in Table 1 were
from experiments in which the PAH was administered in solution. The results of the five values
were averaged to yield 88.5%. Thus, the absorption from sandy soil is estimated as 52% (58.3%
x 88.7%). The absorption from clay-based soil is estimated as 34% (38.6% x 88.5%). The
AAFs are defined as the absorption from soil divided by the absorption from diet x 100. They
are as follows:

AAF oral-soil (sandy)
AAF oral-soil (clay-based)

52% / 92% = 0.57
34% / 92% = 0.37

Ogden notes that the two soils studied were very low in organic content (0.04% and 1.35%).
Certainly, the value for sandy soil is much lower than a typical soils. For instance, in its Risk
Based Corrective Action guidance, the ATSM assumes 1% as a default value for typical soils.
Accordingly, the AAF for clay-based soil is probably more typical of average soils than the AAF
for sandy soil.

Goon et al. (1990)

In an earlier experiment, Goon et al. (1990) studied the bioavailability of B(a)P in aqueous
solution, in laboratory chow, in unaged sandy soil and in unaged clay-based soil. Additional
information was obtained directly from the authors (Goon et al., 1996). The study was performed
in the same manner as the one described above with the exception that 4 male rats and 4 female
rats were placed in each of four study groups, including rodent chow.

In that study, the bioavailability from rodent food was shown to be less than from solution.
When the area under the curve for total radioactivity in blood over 168 hours was compared, the
solution group was 5944 pmol-hour/mol and the rodent chow group was 3179 pmol-hour/mol.
Thus, bioavailability from food was 54% compared to aqueous solution. Bioavailability of B(a)P
administered in slurries adsorbed onto small particles from sand and clay-based soils were also
decreased relative to B(a)P in solution (47% for sandy soil and 28% for clay-based soil).
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Ogden has rejected the data from the Goon et al. (1990) study for AAF derivation and relied
solely on the 1991 experiment for several reasons. First, the results for B(a)P adsorbed to rodent
chow and dissolved in a solution with an aqueous emulsifier are at variance from the results
presented in the large literature on B(a)P absorption discussed above. Table 1 shows that in all
other studies of B(a)P and other PAHs, absorption is high and similar for PAHs adsorbed to food
(either meat or rodent chow), dissolved in vegetable oils, or dissolved in emulsifier solutions.

Second, the results for each treatment group were averaged over data for both males and females,
which had very different starting and ending body weights (see Table 7). The starting body
weight for female rats was 75% to 81% of the body weight of the male rats. Goon et al. in the
1990 experiment averaged the blood radioactivity levels for 3-5 male and 4-5 female rats in each
treatment group and then calculated a group-wide area under the curve (AUC). They did not
calculate the AUC for the total 168 hour experiment for each animal and then average the
animal-specific AUC's. Thus, a sex-specific reduction in bioavailability or any source of animal-
specific variability could lead to artifacts in the group average AUCs.

Third, Ogden has uncovered such variability by evaluating the data for body weights and the
weight gain over the experimental period. Table 7 shows the weights of the animals in each
group before the 12 hour fast period, after the fast period and before dosing, and after the 7 day
experiment. Ogden notes that the variability in the weights of the male animals in the solution
group and in the sandy soil group is much higher than the variability in any of the other groups.
In particular, the variabilities in the post experiment weights for animals in the food groups (male
and female) were much smaller than the variability in the male solution group. (The variability
in animal weights in all groups, including the solution group, was much smaller in the 1991
experiment (see Table 9)).

Lastly, when the pre-experiment and post-experiment animal weights (see Table 7) are compared,
an interesting result is apparent. The weight gain over the experimental period is much higher
for the solution group than the food group (see Table 8). On average, the males in the solution
group gained 9% of their initial fasted weight. The females gained 8% of their initial fasted
weight. However, the males and females in the food group gained 15% and 17% of their initial
fasted weight, respectively. In the Goon et al. (1991) experiment, the B(a)P-solution group, on
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average, gained 15% of their initial fasted weight (see Table 9), again showing that the results
from the 1990 experiment are suspect.

A reasonable explanation for the anomalous results for B(a)P absorption from food and solution
doses is that, for some unknown reason, the animals in the solution group consumed less food
immediately after the B(a)P dosing than did the group that received B(a)P in a slurry of rodent
chow. If the animals in the food group ate more food, then the B(a)P was diluted by a large
volume of soil and water with a greater surface area of material to which it could bind,
preventing gastrointestinal absorption. With the solution group, if they ate less food following
the dosing, then the B(a)P present in their empty stomachs in an emulsified aqueous solution
could be rapidly absorbed, perhaps quantitatively.

Ideally, one could test this hypothesis by studying food consumption records. However, food was
provided ad libitum, and daily animal-specific food consumption was not monitored. However,
the weight gain over the period is a rough measure of food consumption.

The 1990 experiment is also suspect when one compares the male weight gains and the female
weight gains in each treatment group. In the solution, food, and clay-based soil groups, the
males gained more weight over the experimental period (10-18% more than the females).
However, in the sandy soil group, the females gained 91% more weight than the males. Clearly,
the results for sandy soil are suspect.

Ogden does not know why certain groups would have consumed more food and gained
considerably more weight than others. Perhaps radiation-induced or emulsifer-induced gastritis
or diaharrea was the cause. Although all groups received 7.5 mL of emulsifer, in the solution
group, this was the only material administered on an empty stomach. In the other four groups, .
this was given with 2.5 grams of solid material, which would have been wetted by the solution.

Regardless of the reasons for the inadequacies of the 1990 study, the 1991 experiment does not
suffer from these sorts of variabilities and differences in weight gains. In addition, the
experiment used only male animals, so the uncertainties and confounding effects of averaging
the results over animal groups with widely differing body weights and food consumption rates
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are not seen. Accordingly, Ogden used the data from Goon et al. (1991) in AAF derivation, but
rejected the use of the Goon et al. (1990) data.

Summary of Oral-Soil AAFs

Twelve estimates of the oral-soil AAF for PAHs were derived from three studies, as shown in
Table 10. For probabilistic risk assessments, a distribution of AAF values is required. Curve
fitting exercises using Mathematica™ software and using the methods shown in Burmaster (1996)
determined that the 12 data points best fit a Beta4 distribution with the following characteristics:
Betad4 (a=1, b=3, ¢=0.944964, d=0.0699) over the range of 0.07-1.00. Then, Monte Carlo
simulations were run using Crystal Ball™ software. The mean oral-soil AAF for PAHs after
20,000 trials was 0.31 with a standard deviation of 0.18. The 50th percentile oral-soil AAF was
0.27 and the upper 90th percentile oral-soil AAF was 0.57. For deterministic risk assessments,
a point estimate is needed for the AAF. The average of the twelve values is 0.29. This average
value is similar to the mean and 50th percentile values from the AAF distribution. Accordingly,
0.29 is an appropriate point estimate of the oral-soil AAF.

Applicability of Oral-Soil AAFs

These estimates of oral-soil AAFs were derived from studies with B(a)P, a five-ring potentially
carcinogenic PAH and pyrene, a four-ring noncarcinogenic PAH. Because the AAF estimates
for the two PAHs were similar and because the gastrointestinal absorption of various potentially
carcinogenic and noncarcinogenic PAHs is similar (see Table 1), it is appropriate to derive a
single oral-soil AAF for the carcinogenic and noncarcinogenic risk assessment of all potentiaily
carcinogenic PAHs.

DERIVATION OF DERMAL-SOIL AAF FOR POTENTIALLY CARCINOGENIC
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)

Two studies were identified in which the dermal absorption of PAHs was measured from a soil
matrix. These include Yang et al. (1989) and Wester et al. (1990). These studies are discussed
below. Estimates of dermal-soil AAFs can be derived from the results of these studies and data
on absorption from the dose-response studies.
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Dermal Absorption Studies
Yang et al. (1989)

Yang, et al. (1989) measured the percutaneous absorption of benzo(a)pyrene (B(a)P) from
petroleum crude-fortified soil and from pure petroleum crude oil both in live rats and in in vitro
studies using excised rat skin (see Table 11). The soil was a loam containing 1.64% organic
matter, 46% sand, 36% silt, and 18% clay. The B(a)P-soil mixture was prepared by adding the
radiolabelled crude oil in dichloromethane to the soil. The solvent was removed by rotary
evaporator. All soils were used within 72 hours of preparation.

Radiolabelled B(a)P (*H-B(a)P) was added at a known concentration for quantification. In the
in vivo experiments, soil containing B(a)P in crude petroleum or pure crude petroleum containing
B(a)P was applied to the dorsal skin of the female Sprague-Dawley rats. In both cases, the dose
of B(a)P was 0.01 ug/cm®. For the crude oil, 90 ug/cm’ of oil containing 100 ppm B(a)P was
applied. For soil, 9 mg/cm? of soil containing 1 ppm of B(a)P was applied. The dorsal area was
covered with a non-occlusive glass cell to prevent ingestion of the B(a)P by grooming behavior.

Absorption was determined by measuring the radioactivity in the urine and feces once daily and
the urine, feces and tissues at 96 hours. Data from five animals were averaged. After 96 hours,
cumulative absorption of B(a)P from crude-soaked soil (9.2%) was less than that from the crude
alone (35.3%).

In the in vitro experiments, dorsal skin was excised from female Sprague-Dawley rats after
sacrifice. 350 um skin sections were placed in consoles containing 15 mm diameter Franz
diffusion cells. The receptor fluid was an aqueous solution of 6% Volpo-20, a nonionic
surfactant. The absorption was measured by analyzing the surfactant containing receptor fluid
that bathed the receiving reservoir of the absorption chamber for radiolabelled B(a)P. The
receptor fluid was sampled once every 24 hours for four days. Data from five trials were
averaged. Again, 96 hour cumulative absorption was greater for B(a)P in oil (38.1%) versus
B(a)P in oil-soaked soil (8.4%).
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Wester et al. (1990)

Wester et al. (1990) measured the absorption of B(a)P in vivo over 24 hours in the monkey using
acetone as vehicle or using soil containing B(a)P at the 10 ppm level (see Table 12). The soil
used contained 26% sand, 26% clay, and 48% silt. The organic content was not specified. The
B(a)P containing soil was prepared by adding the B(a)P in (7:3, v/v) hexane:methylene chloride.
The soil was mixed by hand and left open to the air to allow dissipation of the solvent. The
B(a)P-soil mixture was not aged before use.

Four female Rhesus monkeys were tested with 40 mg soil/cm’ applied to the abdominal skin.
The skin area was covered with a nonocculusive cover to prevent loss of soil or ingestion of soil
by grooming behavior. Percutaneous absorption was measured by comparing the quantity of
radiolabel (*C-B(a)P) in the urine following topical application to that following intravenous
application. Urine was collected for 24 hours. After 24 hours, all visible soil was collected
from the application site. The skin surface was washed with soap and water, and the monkeys
were returned to metabolic cages for urine collection for an additional six days. In vivo, the
absorption was 51.0% for acetone vehicle and 13.2% for soil.

In vitro studies were also carried out with viable human cadaver skin in cells of the flow-through
design. Human serum was used as the receptor fluid. Radiolabel was determined in the receptor
fluid after 24 hours as well as in the skin after a surface wash with soap and water. The amount
of B(a)P that cannot be removed from the skin with a soap and water wash is designated here
as "absorbed" for the purposes of AAF derivation. In six experiments with skin from two donors,
23.8% of the B(a)P was absorbed with acetone vehicle. From soil (10 ppm), 1.45% was
absorbed in 24 hours.

Dermal-Soil AAF Derivation
The fraction absorbed in a 24-hour or 96-hour experiment has little relevance to human risk
assessment. People who might touch, walk on, or otherwise contact PAH-containing soil would

only be exposed for a period of 6-12 hours at maximum before washing themselves or before the
soil would drop off or be rubbed off the skin. The Wester, ef al. (1990) paper demonstrates that
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soap and water wash can remove a large amount of the administered dose (53-91%), even after
24 hours. Even more would be removed after only 6-12 hours exposure.

EPA guidance for dermal risk assessment recognizes that the time period of a dermal experiment
is an important factor to consider when evaluating experimental data. EPA (1992b) has noted:
"The experiment should provide absorption estimates over a time corresponding to the time that
soil is likely to remain on skin during actual human exposures."

Accordingly, the data from the Yang, et al. (1989) and Wester, et al. (1990) experiments should
be prorated for a reasonable exposure period, such as 6-12 hours. A health-protective way to do
this is to simply assume that absorption is linear over time. The Yang, et al. (1989) in vitro
study showed a linear absorption into rat skin from 24-96 hours, but no data are available for the
0-24 hour period.

In fact, Kao et al. (1985) have shown that the appearance of radiolabel from topically applied
benzo(a)pyrene and other chemicals in human, rodent, and other species' skin in the culture
medium of their in vitro system was exponential, not linear. A distinct time lag is apparent
before any absorption occurs. A time lag has also been shown for various chlorophenols in
human skin (Roberts, et al., 1977; Hugq, et al., 1986). EPA (1992b) also recognizes that a time
lag may exist: "time is required after initial contact with the skin for such a steady-state to be
achieved." Also: "Linear adjustments may not be accurate, since it is unknown how soon steady-
state is established and since steady-state conditions may not be maintained throughout the
experiment due to mass balance constraints."

Thus, linear adjustments of 24 hour absorption data to estimate absorption over 6-12 hours may
overestimate the absorption true absorption, but it is not likely to underestimate absorption. A
health-protective approach would be to assume that a relevant absorption period is as high as 12
hours. (EPA in its recently proposed Hazardous Waste Identification Rule assumes 8 hour
exposures.) With this assumption, the Yang et al, 1989 data from the in vitro experiment can
be adjusted to 0.66% absorption over 12 hours using a linear regression of all four time points.
The data from the in vivo experiment can be adjusted to 1.15% absorption over 12 hours. The
96 hour data is used in this case, because tissue-bound B(a)P was measured only for this time
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point. The 12 hour estimated absorption using a linear regression is only 0.50%, and was thus
rejected for AAF derivation. .

The Wester, et al. (1990) data can be adjusted to 6.6% absorption in the in vivo monkey
experiment over a 12 hour exposure period. Similarly, the 12 hour estimated exposure for the
in vitro human skin experiment is 0.73%.

For probabilistic risk assessments, a distribution of AAF values is required. The numerator and
the denominator of the AAF ratio are defined as separate distributions which are sampled
independently during the probabilistic risk assessment.

Curve fitting exercises for the numerator (dermal absorption of potentially carcinogenic PAHs
from soil) using Mathematica™ software and the methods described in Burmaster (1996)
indicated that the four data points best fit a Betad4 distribution with the following characteristics:
Beta4 (a=1, b=5, ¢=0.146908, d=0) over the range 0-0.12. Monte Carlo simulations were then
run using Crystal Ball™ software. The mean fractional dermal absorption of potentially
carcinogenic PAHs after 20,000 trials was 0.02 with a standard deviation of 0.02.

Curve fitting exercises for the denominator (gastrointestinal absorption of PAHs from dose-
response studies) using Mathematica™ indicated that the 13 data points for absorption in the
PAH dose-response studies best fit a Beta distribution with the following characteristics: Beta4
(a=4, b=1, ¢=0.397, d=0.602697) over the range 0.63-1.00. Monte Carlo simulations were then
run using Crystal Ball™. The mean fractional gastrointestinal absorption of PAHs in the dose-
response studies after 20,000 trials was 0.92 with a standard deviation of 0.06.

Monte Carlo simulations of the dermal-soil AAF were then run using these assumptions. The
mean dermal-soil AAF for potentially carcinogenic PAHs after 20,000 trials is 0.03 with a
standard deviation of 0.02. The 50th percentile AAF was 0.02, and the 90th percentile AAF is
0.06.

For deterministic risk assessments, a single estimate of the dermal-soil AAF is needed. In this

case, four estimates of the dermal absorption of PAHs from soil were presented: 0.66%, 0.73%,
1.15%, and 6.6%. In addition, 12 estimates of the absorption of PAHs from the dose-response
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study were presented in Table 1. The average value is 92%. Four AAF estimates are 0.007,
0.008, 0.01, and 0.07. The deterministic estimate of the dermal-soil AAF is simply the average
of the four AAFs, 0.02. This value is similar to the mean and 50th percentile estimates for the
AAF distribution, and is thus appropriate for use in deterministic risk assessments.

APPLICABILITY OF DERMAL-SOIL AAF TO OTHER CARCINOGENIC PAHS

Dermal-soil AAFs have been derived for B(a)P based on four experimental data points with
B(a)P. However, risk assessment of PAHs involves the calculation of benzo(a)pyrene-toxic
equivalents, which includes the seven PAHs designated as potentially carcinogenic. The
following section addresses the applicability of the B(a)P AAF to other potentially carcinogenic
PAHs.

Various researchers have investigated the dermal absorption of different PAHs from pure
mixtures, such as coal tar, or from solvent vehicles, such as acetone. From these studies, data

- on the comparative dermal absorption of various pure PAHs are available, but no studies are
available on the dermal absorption of various PAHs from a soil matrix.

For instance, Sanders, et al. (1984) studied the dermal absorption of B(a)P and
dimethylbenz(a)anthracene (DMBA) in Swiss-Webster mice from an acetone vehicle. The dermal
absorption was similar for the two PAHs. For instance, at similar dose levels, the amount found
in the tissues and excreta 24 hours after dosing was 84% for B(a)P and 82% for DMBA.

Yang and coworkers (Yang et al. 1986a, 1986b) studied dermal absorption of B(a)P and
anthracene at similar doses from solvent vehicles in the female Sprague-Dawley rat in both in
vivo and in vitro systems. Absorption was similar for the two PAHs. In vivo, absorption after
144 hours was 46.2% for B(a)P and 52.3% for anthracene. In vitro, absorption after 144 hours
was 49.9% for B(a)P and 55.9% for anthracene.

Ng and coworkers (Ng ef al., 1992) studied dermal absorption of B(a)P and pyrene at similar

doses from an acetone vehicle in the hairless guinea pig. Absorption after 24 hours was 73.3%
for B(a)P and 93.9% for pyrene. In an in vitro experiment, absorption of B(a)P was 67.4%
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versus 89.9% for pyrene. In another in vitro experiment, absorption of B(a)P was 39.8% versus
40.8% for pyrene.

Dankovic and colleagues (Dankovic et al., 1989) studied the comparative dermal absorption in
female CD-1 mice of 12 high molecular weight PAHs isolated from the 800-850 degree (F)
complex organic mixture (COM) derived from a coal liquefaction process. Absorption was
measured as the half life of disappearance of the PAH from the mouse skin. The half life was
5.0 hours for pyrene. For B(a)P, the half life was 6.7 hours. All other PAH had half lives
similar to B(a)P, including benz(a)anthracene (6.5 hr), chrysene (7.3 hr), and
benzo(j/k)fluoranthene (8.1 hr).

VanRooij et al. (1995) studied the dermal absorption in the blood-perfused pig ear of 10 PAHs
present in coal tar. The blood-perfused pig ear was chosen as a test system because pig skin
resembles human skin morphologically and functionally and because percutaneous absorption
rates of various chemicals in pig skin are comparable to the rates seen in human skin.

The absorption after 3.3 hours varied among PAHs. Absorption was greatest for phenanthrene
and fluorene. Anthracene, fluoranthene, and pyrene showed similar absorption rates that were
roughly ten times less than those for phenanthrene and fluorene. The 4-6 ring PAHs showed
substantially lower dermal absorption, which was 100-1000 times less than that seen with
phenanthrene and fluorene. It should be noted, however, that the maximum fractional absorption
seen, which was with fluorene, was only 0.004% of the applied dose.

Of the potentially carcinogenic PAH studied in the above dermal absorption experiments, B(a)P
showed equal or greater dermal absorption. None of these experiments were performed with soil
matrices. They all involved applying the PAHs as solutions in organic solvents.

As noted above, dimethylbenz(a)anthracene, benz(a)anthracene, and benzo(b)fluoranthene were
absorbed to a degree similar to B(a)P. Chrysene, benzo(k)fluoranthene, indeno[1,2,3-cd]pyrene,
and dibenzo(a,h)anthracene were absorbed to a lesser degree than was B(a)P. Accordingly, it is
health protective to use dermal-soil AAFs derived for B(a)P for performing risk assessment of
all potentially carcinogenic PAH.

24



OGDEN EnvIRONMENTAL AND ENERGY SERVICES

T EY

RELEVANCE TO HUMAN ABSORPTION

Limited quantitative data are available on PAH absorption in humans. By the oral route,
absorption of pure B(a)P was shown in one study to be similar in humans compared to that seen
in rats and hamsters. However, no data are available on the human gastrointestinal absorption
of PAHs in a soil matrix. The literature presents no basis for presuming that gastrointestinal
absorption of PAHs from soils would be significantly different in humans and experimental
animals.

By the dermal route, several studies are available that document absorption of PAHs from pure
mixtures, such as coal tar, in human subjects. For instance, Clonfero et al. (1986) measured PAH
metabolites in the urine of humans dermally exposed to coal tar. Storer ef al. (1984) measured
PAH levels in the blood of humans exposed to coal tar. Finally, Schoket er al. (1990) measured
aromatic DNA adducts in the skin of humans exposed to coal tar. These and other studies clearly
demonstrate that absorption of PAHs from pure mixtures or from PAHs dissolved in solvents can
occur in human skin.

Only three, however, are available that have quantitated the absorption of pure PAHs or PAHs
in soil matrices in human skin. As discussed above, Wester et al. (1990) studied the absorption
of B(a)P in an acetone vehicle and in soil in both monkeys and in human skin in vitro. The
absorption from acetone was 2.1 times higher over 24 hours in the monkey compared to the
human skin. From the soil matrix, absorption was 9.1 times higher in the monkey compared to
the human skin.

Kao et al. (1985) studied the absorption of B(a)P from acetone in an in vitro system with skin
from six species, including humans. Absorption over 24 hours was highest in the mouse.
Absorption in the marmoset, rat and rabbit was similar to that in human skin. Absorption in the
guinea pig was the lowest.

Storm et al. (1990) studied the absorption of B(a)P in vitro in flow through diffusion cells with
skin from humans, two rat strains, guinea pig, and two mouse strains. Absorption over 24 hours
was similar in the mice, rats, and guinea pig. Absorption in human skin, howevef, was
significantly lower by 1.5-2 fold.
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Available studies indicate that human skin is less permeable to PAHs in pure form than is rodent

- or monkey skin. Thus, the dermal-soil AAF may overestimate the true AAF for human skin.
Because the dermal-soil AAFs are derived from data on rats, monkeys, and humans, however,
they are reasonable, health-protective estimates for use in human health risk assessment.

SUPPORTING EVIDENCE THAT SOIL ADSORPTION REDUCES
GASTROINTESTINAL AND DERMAL ABSORPTION OF PAH

There are several bodies of experimental data that support the concept that soil adsorption over
time binds and sequesters PAH molecules so that they are unavailable for absorption in the skin
and gastrointestinal tracts of humans and animals that might contact the affected soils. The
results of these experiments cannot easily be used to derive a quantitative estimate of the
lowering in absorption, but they are presented here as scientific justification of the phenomenon.

Studies on Soil Bioavailability of other Chemicals

Several studies were identified that compared tetrachlorodibenzodioxin (TCDD) absorption from
soil to either diet, oil vehicle, or alcohol vehicle. These studies demonstrate that gastrointestinal
absorption of TCDD is reduced when present as a component of soil or other matrix that can
adsorb the TCDD. Dioxins and PAHs are two classes of lipophilic chemicals that would be
expected to behave similarly with regard to soil adsorption.

For instance, Van den Berg and co-workers (1983) administered PCDDs and PCDFs from fly-ash
and fly-ash extract to male Wistar rats as a dietary constituent. The absorption from fly ash was
only 22% of the absorption from extracts.

Other studies are available in which absorption of TCDD from soil was compared to oil or
alcohol vehicles. McConnell et al. (1984) investigated absorption in guinea pigs using soil from
Missouri that contained TCDD. Gastrointestinal absorptiori from soil was 15-24% of the
absorption from corn oil.

In a similar experiment, Poiger and Schlatter (1980) studied the effects of soil adsorption on the
oral bioavailability of TCDD in Sprague-Dawley rats. When TCDD was administered as an
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aqueous suspension of soil particles that had been in contact with the TCDD for 8 days, the
fraction of the administered dose that was found in the liver 24 hours
later was 43% of that found with an aqueous ethanol vehicle.

Similar studies have also been performed in rabbits by Bonaccorsi et al. (1984). Levels of
TCDD in the liver 7 days after an oral dose of TCDD either in alcohol or in soil from Seveso,
Italy were compared. The ratio of TCDD absorption from soil relative to alcohol vehicle was
32% in this study.

Umbreit et al. (1986) also studied the effect of soil adsorption on 2,3,7,8-TCDD-induced toxicity
in guinea pigs. Dioxin as a suspension of corn oil and acetone (9:1) (6 ug/kg) given to guinea
pigs by stomach tube caused death in 5 of 8 animals within 5-31 days, and autopsy showed signs
typical of the TCDD-induced toxicity that is observed in the guinea pig. When the same amount
of 2,3,7,8-TCDD was placed on soil for only one hour and then administered to the animals,
similar results were seen. However, contaminated soil from a site in New Jersey containing the
same or double the amount of 2,3,7,8-TCDD failed to cause any deaths and also failed to induce
any recognizable signs of TCDD-induced toxicity. Thus, aging of the soil causes decreased
bioavailability.

Studies on Effects of Dietary Components on PAH Absorption

Several studies have been evaluated on the effects of dietary fiber and other food items on PAH
absorption in the gastrointestinal tract. In general, it has been shown that dietary fiber of various
types can bind or adsorb PAH and reduce their absorption in the gut of experimental animals.
For instance, Gulliver er al. (1983) showed that dietary fiber binds dimethylbenz(a)anthracene
in vitro and decreases solubilization by bile salt solutions by 61-98%. Mirvish et al. (1981)
showed that B(a)P absorption in rats was reduced from 99.8% in semisynthetic diets having no
fiber to 95% when wheat bran was added. Kawamura et al. (1988) studied B(a)P absorption
from various food items in the rat. Absorption was highest when B(a)P was administered in
triolein oil. When B(a)P was given in different food items that included cellulose, bread, lignin,
ovalbumin, spinach, and others absorption was reduced to as low as 40% of that-seen with
triolein. Similar results were seen with the release of B(a)P from food items in vitro in artificial
intestinal fluid.

27



OGDEN ENVIRONMENTAL AND ENERGY SERVICES
B ® - - |

Studies on the Effects of Soil Components on PAH Mutagenicity

Sato et al. (1987) studied the effects of organic chemicals found in soil on the mutagenicity of
B(a)P to Salmonella typhimurium. Humic acid and lignin totally inhibited the ability of B(a)P to
mutate the bacteria in culture. Fulvic acid and water-soluble humic substances inhibited B(a)P -
induced mutagenicity to a lesser degree. It was found that the humic acid inhibited mutagenicity
by binding the B(a)P and making it unavailable to the bacteria in culture. This was shown by
mixing B(a)P and humic acid and then extracting the B(a)P by ethyl acetate. In the presence of
humic acid only 25% of the B(a)P could be extracted compared to controls containing no humic
acid. All of the added B(a)P could, however, be released after ultrasonication, indicating that the
humic acid was reducing B(a)P's bioavailability. '

Studies on Solvent Extractability of PAH from Soils

Karickhoff (1980) showed that PAHs became increasingly more difficult to extract from
sediments with increasing contact time. For instance, after 4 minutes pyrene was 94%
recoverable with solvent extraction, but after 122 hours only 36% could be recovered.
Quantitative recovery after a 72 hour Soxhlet extraction confirmed that the PAH had not
degraded, but rather was adsorbed tightly to sediment particles.

Hatzinger and Alexander (1995) showed that butanol extractability of phenanthrene decreased
from 95% recovery to 61% recovery from a high organic content soil when the mixture was aged
84 days. The soil was sterilized to prevent bacterial degradation. Greater recoveries after
Soxhlet extraction confirmed that soil adsorption was the reason for reduced solvent extraction
efficiency.

Studies on Bacterial Degradation of PAH in Soils

Hatzinger and Alexander (1995) introduced phenanthrene into high organic content soils that had
been sterilized to remove organisms that might degrade the PAH. After aging the phenanthrene
in the soil for varying periods of time (29 weeks, 45 weeks), a phenanthrene-degrading organism
was introduced. After a month, 60% of the phenanthrene was degraded in the unaged control.
Bacterial degradation was diminished in the aged soils. Degradation plateaued at 45% for the
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29 week soil and at 40% for the 45 week soil. Adsorption of the PAH to the soil was
responsible for the reduction in its bioavailability to microorganisms.

Weissenfels et al. (1992) studied the biodegradation of PAHs in soils from a closed coking plant.
PAHs were not degraded by autochthonous organisms or after inoculation with bacteria known
to degrade PAHs. However, rapid degradation of PAHs was observed when PAHs were
extracted from the soil by an organic solvent and then re-introduced into the extracted soil
material. Sorption of the extracted PAHs onto the extracted soil followed a two-phase process.
The authors described the slow phase of sorption as migration into less accessible sites within
the soil matrix. The authors concluded that the PAHs so sorbed within the soil matrix are non-
bioavailable and non-biodegradable. The initial soil was extracted with water and assayed for
toxicity with bioluminescent bacteria. No toxicity was observed in the aqueous phase.

Studies on Reduction in Chemical Toxicity after Aging in Soil Matrices

Edwards et al. (1957) showed that the lethal dose of lindane and aldrin in Drosophila
melanogaster increased as soil organic content increased. The LD, for lindane varied from 0.25
mg/kg in soils containing 0.5% organic matter to 8.6 mg/kg in soils containing 40% organic
matter. For aldrin, the results were similar. Peterson et al. (1971) reported a similar result for
DDT in Drosophila melanogaster. The LDy, increased from 43 to 790 mg/kg as the fraction
of organic matter in the soil increased.
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SUMMARY

The point estimate Oral-Soil AAF derived for deterministic risk assessment of potentially
carcinogenic PAH is 0.29. For probabilistic risk assessments, the Oral-Soil AAF distribution
is defined as a Beta4 distribution with the following characteristics: Beta4 (a=1, b=3, ¢=0.944964,
d=0.0699) over the range of 0.07-1.00.

The point estimate Dermal-Soil AAF derived for deterministic risk assessment of potentially
carcinogenic PAH is 0.02. For probabilistic risk assessments, a distribution of Dermal-Soil AAF
values is required. The numerator and the denominator of the AAF ratio are defined as separate
distributions which are sampled independently during the probabilistic risk assessment. The
numerator (dermal absorption from soil) is defined as a Beta4 distribution with the following
characteristics: Betad4 (a=1, b=5, c=0.146908, d=0) over the range 0-0.12. The denominator
(gastrointestinal absorption of PAHs from dose-response studies) is defined as a Betad
distribution with the following characteristics: Betad4 (a=4, b=1, ¢=0.397, d=0.602697) over the
range 0.63-1.00.
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TABLE 1

SUMMARY OF ABSORPTION DATA FOR PAH DOSE-RESPONSE STUDIES

Value | Citation Animal PAH Vehicle

91.2% | Hecht male F344 rats B(a)P peanut oil (single dose)

89% Hecht male F344 rats B(a)P char-broiled hamburger (single
dose)

98.8% | Hecht Humans B(a)P char-broiled hamburger (single
dose)

88.7% | Rabache young male Wistar rats B(a)P synthetic diet (22 days)

99.6% | Rabache adult male Wistar rats B(a)P synthetic diet (22 days)

96.7% | Mirvish male Syrian golden hamsters | B(a)P corn oil + commercial
diet Method I (7-10 days)

98.0% | Mirvish male Syrian golden hamsters | B(a)P corn oil + commercial diet

T Method II (7-10 days)

87% Withey male Wistar rats pyrene 20% Emulphor/ 80% saline
(single dose)

86.9% | Grimmer | male Wistar rats chrysene 33% DMSO/ 66% corn oil
(single dose)

94% Bartosek female CD-COBS rats B(a)A 10% emulsifier/ 90% olive oil
(single dose)

75% Bartosek | female CD-COBS rats chrysene 10% emulsifier/ 90% olive oil
(single dose)

97% Bartosek | female CD-COBS rats triphenylene 10% emulsifier/ 90% olive oil
(single dose)

93.8% | Mirvish male Syrian golden hamsters | 3-methyl corn oil + semisynthetic diet (7-

cholanthrene 10 days)
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TABLE 2

METHODS OF SUMMARIZING PAH GASTROINTESTINAL ABSORPTION DATA

Method Used # Data Points Average Absorption
Each experiment within a study 13 92.0%
used as a single data point*
Each result presented in each 24 92.1%
study used as a single data point
Each result presented in each 15 95.0%
B(a)P study used as a single data
point
Each study represented as a 7 90.9%
single data point
Each B(a)P study represented as 3 94.4%
a single data point .

* Method used in this AAF derivation.
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TABLE 3
PYRENE METABOLITES IN MOUSE URINE
FOLLOWING "NEAT" MGP INGESTION
(ROZETT ET AL., 1996)

Amount of MGP ‘Sum of *Pyrene consumed ‘Fractional
residue in diet Metabolites pg/mouse Urinary Excretion
pg/mouse

0.003% 0.10 0.79 12.8
0.030% 1.39 11.39 12.2
0.100% 7.58 31.46 24.1
0.300% 12.13 62.27 19.5
Control - - -

*The sum of 1-OH P-GIcUA, 1-OH P-Sul, and 1-OH P levels is expressed in terms of

equivalents of pyrene.
*The amount of pyrene consumed by animals in metabolism cages on day 15 over a
period of 24 hours.

‘Fractional Urinary Excretion = (amount of pyrene excreted / amount of pyrene consumed
on day 15) x 100. (The authors termed this "bioavailability.” Because this is a
nonstandard use of the term, it is renamed here.)

Note: The pyrene level in "neat" MGP was 6.89 mg/kg.
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TABLE 4

PYRENE METABOLITES IN MOUSE URINE FOLLOWING SOIL INGESTION
(ROZETT ET AL., 1996)

*Sum of ®Soil Pyrene in | "Pyrene ‘Fractional |
Soil Fraction | Metabolites | consumed | soil pg/g | consumed | Urinary
pg/mouse g/mouse pg/mouse Excretion
>(0.850 mm 0.37 0.65 14.3 94 39
>0.710 mm 0.69 0.64 61.8 39.7 1.7
>0.600 mm 0.70 0.68 63.4 43.1 1.6 ||
>0.500 mm 0.95 0.63 74.6 47.2 2.0 |
>(0.300 mm 1.72 0.66 26.8 17.7 9.7 |
>0.150 mm 1.77 0.58 177.9 102.4 1.7
<0.150 mm 9.86 0.36 185.6 66.7 14.8
Control - - . - - -

*The sum of 1-OH P-GIcUA, 1-OH P-Sul, and 1-OH P levels is expressed in terms of
equivalents of pyrene.

*The amount of soil and pyrene consumed in metabolism cages on day 15 over a period of
24 hr.

°Fractional Urinary Excretion = (amount of pyrene excreted / amount of pyrene consumed
on day 15) x 100. (The authors termed this "bioavailability." Because this is a
nonstandard use of the term, it is renamed here.)
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TABLE 5
PYRENE URINARY METABOLITES

SOIL VS ORGANIC EXTRACT OF SOIL

(WEYAND ET AL., 1996)

Diet *Pyrene Ingested *Pyrene Excreted ‘Fractional
(ng/mouse) (ng/mouse) Urinary Excretion
Extracted Soil #1 0 0 ND
Extracted Soil #2 0 0 ND
Soil #1 0.60 0.039 6.2
Soil #2 30.42 0.527 1.7
Organic Extract #1 0.56 0.097 17.2
Organic Extract #2 25.91 4.16 16.1

*The sum of 1-OH P-GlcUA, 1-OH P-Sul, and 1-OH P levels is expressed in terms of

equivalents of pyrene.

*The amount of soil and pyrene consumed in metabolism cages on day 15 over a period

of 24 hr.

‘Fractional Urinary Excretion = (amount of pyrene excreted / amount of pyrene consumed

on day 15) x 100. (The authors termed this "bioavailability."

nonstandard use of the term, it is renamed here.)

Note: Soil #1: 9 ppm total PAHs; Soil #2: 377 ppm total PAHs.
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TABLE 6

BENZO(a)PYRENE BIOAVAILABILITY FROM SOILS*
(GOON et al., 1991)

| SOIL AGING ) SANDY SOIL CLAY-BASED SOIL ﬁ
Il 1 day 66.9% 48.8% ||
1 week 70.4% 52.1% JI
1 month 67.7% 58.5% JI
6 months 54.3% 38.5%
1 year 62.2% 38.6%

Average- 6 mo. & 1 year 58.3% 38.6%
a (Area under the blood radioactivity curve),, / (Area under bloo 0activity curve)iuon
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TABLE 7

ANIMAL WEIGHTS DURING GOON et al. (1990)

37

| TREATMENT | SEX NONFASTED | FASTED WEIGHT AT
GROUP WEIGHT (§) | WEIGHT (g) | DAY 7 (g)
Solution Males 221 +/- 9 218 +/- 12 237+-24 |
Females | 175 +/- 3 165 +- 4 179+-3 |
Rodent Chow | Males 206 +/- 7 222 +1- 2 25545 |
Females | 173 +/- 6 165 +- 2 193 +- 4 ”
Sandy Soil Males 222 +- 6 216 +- 6 228 +/- 19 |
Females | 180 +/- 4 167 +/- 4 190 +/- 4
Clay-Based | Males 230 +- 5 21 +- 8 251 +/- 10
Soil
Females | 172 +/- 6 162 +- 6 188 +/- 4
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TABLE 8

WEIGHT GAIN DURING GOON et al. (1990)

TREATMENT SEX WEIGHT GAIN % WEIGHT
GROUP DURING 7 DAY GAIN DURING 7
PERIOD (g) DAY PERIOD
Solution Males 19 9%
Females 14 8% I
Rodent Chow Males 33 15% “
t ' Females 28 17%
Sandy Soil Males 12 6%
Females 23 14%
Clay-Based Soil Males 30 14%
Females 26 16%
— _L—_— ————
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ANIMAL WEIGHTS DURING GOON et al. (1991)

TABLE 9

FASTED

AGING TREATMENT | NONFASTED WEIGHT AT
PERIOD GROUP WEIGHT (g) WEIGHT (g) DAY 7 (g)
1 DAY - Solution 238 +/- 3 219 +/-3 255 +/- 4
1 DAY Clay-Based Soil | 245 +/- 4 235 +/- 4 252 +/- 11
1DAY Sandy Soil 256 +/- 6 239 +/- 6 266 +/- 11
1 WEEK Clay-Based Soil | 222 +/- 3 217 +/-3 243 +/- 10
1WEEK Sandy Soil 223 +/- 4 216 +/- 3 241 +/- 9

1 MONTH Clay-Based Soil | 243 +/- 8 220 +/- 5 254 +/- 7

1 MONTH Sandy Soil 241 +/- 5 219 +/- 4 268 +/- 4
6 MONTHS Clay-Based Soil | 238 +/- 3 211 +/-3 263 +/- 5
6 MONTHS Sandy Soil 244 +/- 3 217 +/- 4 263 +/- 5

1 YEAR Clay-Based Soil | 242 +/- § 214 +/- 4 259 +/- 7
1-'YEAR Sandy Soil 244 +/- 5 214 +/- 4 258 +/- 7
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TABLE 10

ORAL-SOIL AAFS FOR PAHS

p— ——
Oral-Soil AAF Notes Source
' 0.07 - | CD-1 mice, MGP soil, 0.71-0.85 mm | Rozett et al. (1996)

I 0.07 CD-1 mice, MGP soil, 0.6-0.71 mm | Rozett et al. (1996)

| 0.08 CD-1 mice, MGP soil, 0.5-0.6 mm | Rozett et al. (1996)

» 0.09 CD-1 mice, MGP soil, 0.15-0.3 mm | Rozett ez al. (1996)
0.11 B¢C,F, mice, MGP soil Weyand et al. (1996)

“ 0.28 CD-1 mice, MGP soil, <1 mm Rozett et al. (1996)
0.32 CD-1 mice, MGP soil, 0.85-1 mm Rozett et al. (1996)
0.36 B,C,F, mice, MGP soil Weyand et al. (1996)
0.37 rats, clay-based soil Goon et al. (1991)
0.40 CD-1 mice, MGP soil, 0.3-0.5 mm Rozett et al. (1996)
0.57 rats, sandy soil Goon et al. (1991)
0.76 CD-1 mice, MGP soil, <0.15 mm Rozett et al. (1996)
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TABLE 11

DERMAL ABSORPTION OF BENZO(a)PYRENE FROM SOIL IN THE RAT
YANG, ET AL. (1989)

Time Point NN In Vivo Results In Vitro Results
24 Hours' 1.1% (0.3)'? 1.5%*
48 Hours' 3.7% (0.8)'? 3.5%*
72 Hours' 5.8% (1.0)!? 5.5%*
I 96 Hours’ 9.2% (1.2)'? 8.4%*

'Values shown for 48-96 hours are cumulative. Results are the mean for five rats
(standard error).
2 Urine plus feces
? Urine plus feces plus tissues.
4 See Figure 1 of Yang, et al. (1989)
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TABLE 12

DERMAL ABSORPTION OF BENZO(a)PYRENE FROM SOIL

WESTER, ET AL. (1990)

Sample ' Monkey Skin Human Skin
1 13.1%' 1.01%’
2 10.8%!' 1.52%’
3 18.0%' 0.61%’
4 11.0%! 2.21%’
5 NA 0.31%’
6 NA 3.01%’

Mean +/- SD 13.2% +/- 3.4%? 1.45% +/- 1.02% 2
'Percentage of applied dose absorbed = (**C urinary excretion for seven days following 24
hour topical application) /(**C urinary excretion following intravenous administration) x
21(;\(/)1ean +/- Standard Deviation
? Fraction of applied dose in the skin plus fraction in receptor fluid.
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Appendix H
UNCERTAINTY ANALYSIS OF RISK ESTIMATES

This appendix examines uncertainties in the exposure and health effects
data that are relevant for assessing potential human health risks associated
with exposure to contaminants originating from the industrial property. Many of
the key quantities considered in the risk assessment are highly uncertain. For
example, the following factors have not been estimated with high precision or
confidence:

(a) The spatial distribution and extent of contamination from the industriai
property in various directions is not well known. Instead, it must be estimated

from soil sample data. (See discussion in Appendix B).

(b) The_fraction of PAHs found at any specific location that arise from the
industrial property is uncertain. The problem of distinguishing between Celotex-
related and "background" (meaning non-Celotex-related) contamination arises,
since the same contaminants and approximate composition of PAHs found near
the industrial property are also found at distances remote enough to make
association with the industrial property implausible.

(c) The magnitudes and frequencies of individual exposures depend on
individual behaviors and on details of the yards (e.g., extent of vegetative cover

as opposed to rock and debris cover) that have not been quantified. Hence, the
actual magnitude of individual exposures is uncertain. Drive-by inspection of
yards in the vicinity of the industrial property suggests that they are dissimilar in
many respects (e.g., more rubble, less accessible soil useful for gardening or
recreation) compared to locations further from the industrial property. How these
local characteristics affect individual behaviors and exposures has not been
estimated. Similarly, local demographic characteristics (e.g., the ages,
occupations, recreational patterns, etc.) of neighbors of the industrial property
have not been examined. Yet, these characteristics may affect the magnitudes
and frequencies of individual exposures to yard soils.
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(d) The amounts of internal doses of reactive, potentially carcinogenic PAH
metabolites formed in humans at the exposure levels in question are not known.

In particular, the relative amounts of internal doses formed in humans compared
to the amounts formed in animals under the experimental conditions used to
establish the carcinogenicity of PAHs such as B(a)P are not known.

(e) The cancer potency of PAHS, including B(a)P, at the concentrations found
near the industrial property is not known. Specifically, the relation between
carcinogenic potency of B(a)P at the high doses used in animal carcinogenicity
experiments and its potency at the much lower levels found in the soil samples
examined in this study is not known. In addition, the potency of the PAH
mixtures found in the soil samples is uncenrtain.

These uncertainties create a challenge for fair, efficient, health-protective risk
management. The actual human health risks posed by the industrial property
are not known. They would be costly to quantify with high precision and
confidence, since doing so would require resolving each of these sources of
uncertainty. Yet, it is desirable to avoid the two types of risk management errors
most likely to occur in this case: failure to adequately reduce Celotex-related
exposures, and failure to limit reductions to those that significantly reduce actual
human health risks. The purpose of the analyses reported in this appendix and
the next one is to reduce the probabilities of both types of errors by introducing
relevant information and findings from recently completed data analyses and
literature reviews. A suggested approach to risk management decision-making
in the presence of the uncertainties just listed is offered after some relevant
facts, data, and statistical results have been summarized.

Appendix B focuses on the first issue -- uncertainty about the spatial
extent of contamination from the industrial property. This issue can be
addressed without considering risk assessment questions and data: it rests
solely on statistical analysis of the soil sample data collected so far. Analysis of
these data reveals the maximum probable geographic extent of effects from the
property, and thus provides a basis for bounding the geographic scope of the
risk assessment without regard for risk magnitudes. This appendix presents the
remaining sources of uncertainty and their implications for risk management.
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ESTIMATING THE FRACTION OF PAH EXPOSURES AND
CARCINOGEN EXPOSURES DUE TO THE CELOTEX
PROPERTY

CONCEPTS FOR ASSIGNED SHARE CALCULATIONS

Cancer risks due to environmental chemical carcinogens are typically
small compared to cancer risks from all sources. At most, a few percent of total
avoidable cancer risk is typically attributable to environmental insults (Doll and
Peto, 1981). This raises the following key question: How much of the excess risk
of cancer created by PAHs in the soil at properties examined in this study is due
to the industrial property, as opposed to other sources of PAHs? The
calculations of the previous appendix can help to answer this question.

The scientific, demographic, and behavioral uncertainties previously
catalogued make it impossible to determine absolute risks with high precision
and confidence. However, the attributable risk of excess cancers due to the
industrial property may be estimated by the ratio of Celotex-related exposure to
total exposure, with the exposures from different sources being weighted by
their relative potencies when these can be estimated.

The probability that an excess cancer is attributable to soil PAHs from Celotex
operations can be estimated as the product of the following four factors, each of
which addresses an aspect of the relative contribution to total carcinogenic
exposure made by different sources:

1. PAH from Celotex-contaminants in soil / PAH from all contaminants in
soil.

2. PAH from all soil / PAH from all sources (cooked foods, cigarettes,
diesel exhaust emissions, coal-fired power plant emissions, etc.)

3. Exposure to PAH from all sources / Exposure to all carcinogens from
all environmental sources, weighted by their relative potencies.
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(Note: Other sources of environmental carcinogens identified by the EPA
include diesel exhaust, radon, cigarette smoke, benzene, MTBE, vinyl
chloride, and so forth. This background of exposures to carcinogens has
not been quantified specifically for neighbors of the industrial property.)

4. Exposure to carcinogens from all environmental sources / Exposure to
carcinogens from all sources (including diet and lifestyle).

In the absence of more specific information about the values of these factors,
the relative contribution of Celotex-related contamination to the relative risk of
cancer can be estimated by taking a plausible upper bound on each of the four
factors and using their product as an upper-bound estimate for the conditional
probability that Celotex contamination would be responsible for a cancer, given
that a cancer occurs.

Table 1 contains background information on B(a)P that may be helpful in
estimating plausible upper bounds for the first three of these factors. For
example, to quantify the fraction of soil PAHs that are due to the industrial
property, one must consider other, competing sources of soil PAHs, including

(i) Soil PAHs from smoke or soot (e.g., from wood fires, outdoor cooking or
charcoal grilling, pollution from coal-fired power plants, etc.)

(i) Soil PAHs from automobile emissions and other gasoline combustion (e.g.,
lawn mowers, other gasoline-powered or diesel-powered equipment).

(iii) Soil PAHs from asphalt roads (e.g., carried in water runoff).

Although the fractions of soil PAHs due to each of these sources have not been
quantitatively modeled for locations near the industrial property, it would be
unrealistic to completely ignore them. One possibility is to represent the fraction
of soil PAHs due to emissions from the industrial property as an unknown
quantity, uniformly distributed between 0 and some plausible upper bound. To
- be conservative (i.e., tending to maximize the risk attributed to the industrial
property), the upper bound might be taken to be 100%.
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TABLE 1: Excerpts from Agency for Toxic Substances and Disease Registry
(ATSDR) Public Health Statement for B(a)P, May, 1990

What is benzo[a]pyrene?

Benzo[a]pyrene (B[a]P) is one of the polycyclic aromatic hydrocarbon (PAH)
compounds. Because it is formed when

gasoline, garbage, or any animal or plant material burns, it is usually found in
smoke and soot. This chemical

combines with dust particles in the air and is carried into water and soil and
onto crops. Benzo[a]pyrene is

found in the coal tar pitch that industry uses to join electrical parts together. It is
also found in creosote,

a chemical used to preserve wood.

How might | be exposed to benzo[a]pyrene?

People may be exposed to B[a]P from environmental sources such as air, water,
and soil and from cigarette smoke

and cooked food. Workers who handle or are invoived in the manufacture of
PAH-containing materials may also

be exposed to B[a]P. Typically, exposure for workers and the general

population is not to B[a]P alone but to

a mixture of similar chemicals.

The soil near areas where coal, wood, or other products have been bumed is
another source of exposure. Exposure to B[a]P and other PAHs may also occur
through skin contact with products that contain PAHs such as creosote-treated
wood, asphalt roads, or coal tar.

People may be exposed to B[a]P by drinking water from the drinking water
supplies in the United States that have been found to contain low levels of the
chemical. Foods grown in contaminated soil or air may contain B[a]JP. Cooking
food at high temperatures, as occurs during charcoal-grilling or charring, can
increase the amount of B[a]P in the food. Benzo[a]pyrene has been found in
cereals, vegetables, fruits, meats, beverages, chewing tobacco, and in cigarette
smoke.

The greatest exposure to B[a]P is likely to take place in the workplace. People
who work in coal tar-production

plants; coking plants; asphalt-production plants; coal-gasification sites; smoke
houses; municipal trash

incinerators; and facilities that burn wood, coal, or oil may be exposed to B[a]P
in the workplace air.

Benzo[a]pyrene may also be found in areas where high-temperature food fryers
and broilers are used.

The general population may be exposed to dust, soil, and other particles that
contain B[a]P. The largest
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d

sources of B[a]P in the air are open buming and home heating with wood and
coal. Factories that produce coal tar also contribute small amounts of B[a]P to
the air. People may come in contact with B[a]P from soil on or near hazardous
waste sites, such as former gas-manufacturing sites or abandoned wood-
treatment plants that used creosote.

How does benzo[ajpyrene get into my body?

The most common way B[a]P enters the body is through the lungs when a
person breathes in air or smoke containing

it. It also enters the body through the digestive system when substances
containing it are swallowed. Although

B[a]P does not normally enter the body through the skin, small amounts could
enter if contact occurs with soil

that contains high levels of B[a]P (for example, near a hazardous waste site) or
if contact is made with heavy

oils containing B[a]P.

What levels of exposure have resulted in harmful health effects?
No information has been found about specific levels of B[a]P that have caused

harmful effects in people after
breathing, swallowing, or touching the substance.
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Similarly, the fraction of total PAH exposure that is due to soil PAHs can only be
calculated or estimated by considering competing sources of exposure, such as
cooked foods, cereal, vegetables, meat, and fruits, home heating with wood or
coal, drinking water, secondary cigarette smoke, and so forth (see Table 1).
Given all these sources of PAH exposure, the fraction due to PAHSs in soil may
be quite small, especially if the different sources are weighted to reflect relative
bioavailabilities of the PAHs from different sources (with PAHs in food probably
being more readily available than PAHs in soil particles, for example). A
subjective estimate of a plausible upper bound on the fraction of PAH exposure
due to soil might be 10%, although the true number could be much lower,
depending on details of cigarette smoking, heating fuels, consumption of
cooked foods, and so forth that have not yet been provided for neighbors of the
industrial property. To model the uncertainty about this fraction, a uniform
distribution between 0 and 0.1 might be assumed.

The fraction of total environmental carcinogen exposure that is attributable to
PAHs is even more difficult to estimate in the absence of specific information
about individual behaviors and exposures. The Agency for Toxic Substances -
. and Disease Registry (ATSDR) that provided the information in Table 1 also
maintains a ranked list of the top 20 hazardous substances, on which B(a)P
appears as the eighth one (after lead, arsenic, metallic mercury, vinyl chloride,
benzene, PCBs, cadmium, and before chloroform, various pesticides, and other
chemicals). The ATSDR links each of the chemicals ranked above B(a)P to
potential human cancers, with the sole exception of metaliic mercury. A
reasonable assumption might be that the carcinogenic burden from PAHs
accounts for no more than 5% of the total carcinogenic burden imposed by all
hazardous substances (since there are many in the top 20 alone that may pose
an equal or greater threat).

Rather than making additional speculative assumptions about the probability
distributions of the four relative risk factors, one could use deterministic upper
bounds to calculate an upper bound on the excess cancer risk attributable to
the industrial property. For example, if the upper bounds used are as follows:

25 October 1996 7 © 1996, Cox Associates



2800 S. Sacramento Site
1. Celotex contribution to PAHSs in soil < 100%

2. Soil contribution to total environmental PAH exposure < 10% (based
on prevalence of secondary smoke, engine exhaust emissions, air
poliution, and other sources of environmental PAHs)

3. Environmental PAH contribution to total environmental carcinogen
exposure < 5% (based on prevalence of non-PAH carcinogens such as
benzene, radon gas , pesticides, drinking water carcinogens and other
sources of environmental carcinogens)

4. Environmental contribution to total carcinogen exposure < 2% (based
on Doll and Peto estimates from cancer epidemiology)

then the conditional probability, or share in risk, for excess cancer risk
attributable to the industrial property would not be expected to exceed the
following:

Example upper bound for risk attributable to the industrial property if a
cancer occurs = (100%)(10%)(5%)(2%) = 0.0001.

The risk due to Celotex contamination may be smaller, although it cannot be
larger (unless the estimated upper bounds are too small). For example, if the
effective cancer potency of soil PAHs at the concentrations found in yards
located near the industrial property were very small or zero, then the absolute
risk due to these contaminants would, correspondingly, be very small or zero.
The value of 0.0001 is based solely on estimated relative contributions to
carcinogenic exposures, rather than on the abilities of such exposures to cause
cancer.

Instead of making a deterministic upper-bound calculation, it may be preferable
to take a more informative probabilistic approach that better expresses
uncertainties about the various risk factors. For example, suppose that the
following probability assumptions are made: -
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1. Celotex contribution to PAHSs in soil is uniformly distributed between 0
and 100%.

2. Soil contribution to total environmental PAH exposure is uniformly
distributed between 0 and 10%.

3. Environmental PAH contribution to total environmental carcinogen
exposure is uniformly distributed between 0 and 5%.

4. Environmental contribution to total carcinogen exposure is uniformly
distributed between 0 and 2%.

Then Monte-Carlo uncertainty analysis shows that the expected excess risk (or
relative exposure) attributable to the industrial property is about 6E-06, i.e., 6
parts in a million, with a 95% upper uncertainty bound of about 30E-06. These
numbers are again based on estimated relative contribution of Celotex-related
soil PAHs to total carcinogenic burden. The actual risk due to the Celotex-
related PAHs may be smaller if the potencies of carcinogens are taken into
account. Specifically, as we shall next show, the carcinogenic potency of soil
PAHs in humans may be quite low. Thus, the calculations in this section should
be interpreted as attempting to establish plausible bounds on the uncertainty
about the contribution of the industrial property to cancer risk.
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ESTIMATING THE INTERNAL DOSES OF CARCINOGENS
FORMED FOLLOWING EXPOSURE TO SOIL PAHs

CONCEPTS FOR INTERNAL DOSE CALCULATIONS

The logic of the preceding calculations is that if no more than x% of a set
of identical cancer-causing molecules acting on a person come from a
particular source, then, in the absence of more specific information, no more
than x% of the cancer risk experienced by the person should be attributed to
that source. Such calculations can be very useful when there is a lot of
uncertainty about absolute exposure magnitudes and cancer potencies,
because the "percentage of molecules" perspective does not depend on the
absolute number of molecules or on their ability to cause cancer. To go further
and seek to quantify absolute risk, as defined by the expected number of excess
tumors created by exposure to a source (such as soil PAHs originating at the
industrial property), it is necessary to make some speculative assumptions. As
noted by the Federai EPA (IRIS data base), "Human data specifically linking
benzo(a)pyrene (BAP) to a carcinogenic effect are lacking." Instead, animal
data have been used to estimate the potential carcinogenicity of B(a)P in
humans. But this extrapolation raises several additional uncertainties. For
e)iample:

1. The routes of dose administration used in animal studies (e.g., implantation in
the stomach wall, injection, ingestion, forced inhalation, intratracheal instillation)
are not representative of realistic exposure conditions. Cancers that occur
under such extreme conditions of administration may not occur under more
realistic conditions, as has been demonstrated experimentally in animals
(Collins et al., 1991, p. 171). Moreover, neither the inhalation route nor the
forced ingestion routes studied in animal experiments are necessarily relevant
to the exposure pathways (especially, dermal and ingestion) experienced by
humans.

2. The extrapolation of effects from rodents to humans is speculative. To make it
more credible, the ways in which humans and animals metabolize and

eliminate PAH (and, specifically, B(a)P) doses must be compared.
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3. The interpolation of tumorigenic response rates between high doses and low
(or zero) doses is questionable. The best procedures for interpolating between

control group tumor rates and dose group tumor rates will depend on the
biological processes involved.

Current regulatory risk estimates either ignore these uncertainties or introduce
simple "default" assumptions to fill in the gaps in scientific knowledge. The
remainder of this section reexamines the inter-species extrapolation and high-
dose to low-dose interpolation questions using data specific to B(a)P, which are
more relevant in this case than the default assumptions.

A key concept of modem, "biologically-based’ risk assessment (BBRA) is
that administered doses affect cancer rates and cancer risks only through
internal doses, e.g., through the quantity of reactive carcinogenic metabolites
formed by metabolic activation of the administered PAH. Therefore, the
following two questions become central in assessing the implications of animal
experiment data for human cancer risks:

Q1. How does the probability of tumor, in a human or in an animal, depend on
the quantity of intemal dose received?

Q2: How does the internal dose received depend on the dose administered (or
on "exposure”, in the case of humans)?

The answers to these two questions determine the absolute risk associated with
a given exposure profile or administered dose.

DIFFERENCES IN INTERNAL DOSES ACROSS SPECIES BASED ON
COMPARISONS OF ENZYME ACTIVITY LEVEL

In the situation of chronic, low-level exposures most relevant for the
Celotex case, standard pharmacokinetic and metabolic models imply that the
average internal dose of carcinogenic metabolites (whose identities may or may
not be known) reaching the (perhaps unknown) target organs and cell
populations per unit time will be proportional to the average administered dose
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per unit time (Cox, 1995). However, the steady-state ratio of internal dose to
administered dose may be different in different species. A standard "default"
assumption made in many regulatory risk assessments, including those for
B(a)P, is that the ratio of biologically effective internal dose -- meaning the dose
of carcinogenic metabolites acting on cell populations to cause cancer or
increase cancer risk -- to administered dose depends on the body weight of the
exposed species. (This includes allometric scaling based on surface areas,
since surface areas are determined from body weights.) For specific chemicals
such as B(a)P, it is possible to replace this generic default assumption with
more specific and relevant information. For example, available evidence on the
biochémistry of metabolic activation and detoxification off B(a)P in different
species may be used to refine the estimated ratio of internal dose to
administered dose in different species. This is often done by examining the
enzymes involved in metabolic activation and detoxification and comparing the
activity intensities of these enzymes across species.

It is generally accepted that many carcinogenic PAHs, including B(a)P,
are metabolized to their carcinogenic forms by monooxygenases (specifically,
the P450 enzyme superfamily, which catalyzes single-electron oxidation of
PAHs. and. binding to DNA; as well as playing a role in subsequent
detoxification of diol intermediates) (Cavalieri and Rogan, 1992). Recent
evidence also shows that protective enzymes (glutathione) that shield cells from
oxidative DNA damage probably play a role in PAH carcinogenicity in both
humans (Grinberg-Funes et al., 1994) and other species (Kirby et al., 1995).
The highest carcinogenic risks from PAH exposures are likely to occur under
exposure conditions that cause depletion of glutathione (GST and/or GSH)
reserves and that lead to high levels of metabolically activated PAH oxidized
metabolites. Conversely, if exposure levels are low enough so that glutathione
reserves are adequate and carcinogenic metabolites of PAHs are removed or
detoxified before they can bind to DNA or other target macromolecules and
cause damage, then cancer risk is likely to be relatively low.

These elementary biochemical observations suggest that the ratio of
monooxygenase (P450) to glutathione resources in different species may
provide a useful qualitative guide to species susceptibility to PAH-induced
carcinogenesis. Quantitative data for making comparisons across species are
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suggestive at best, but may be obtained if mixed function oxidases (MFO) and
glutathione-s-transferase (GST) activity levels in different tissues are used as
surrogates for the (unknown) specific MFO and glutathione resources most
relevant for PAH metabolism. In particular, the ratio of MFO specific activities in
subcellular preparations of lung tissues from Sprague-Dawley rats compared to
preparations of lung tissues from humans is about 0.11/0.0006, while the GST
specific activity levels are indistinguishable (Lorenz et al., 1984). Similarly, for
mice, the MFO specific activity level is about 0.732 / 0.0006 = 1220 times higher
in mice than in humans, while the GST specific activity level is about 727 / 78 =
9.3 times higher. Thus, if the MFO-to-GST ratio is a useful surrogate indicator of
species susceptibility based on relative internal doses, then mice should be
about two orders of magnitude more susceptible than _humans. To a first
approximation, in the absence of more specific and detailed information, it might
be expected that the rate of formation of carcinogenic PAH metabolites from
administered PAH doses via MFO-catalyzed metabolism is also about two
orders of magnitude greater in rats and mice than in humans. For chronic, low-
level exposures leading to steady-state internal dose concentrations, the
internal dose in a rat would be expected to be at least tens, and more probably
hundreds, of times greater than the corresponding intermal dose in a human,
based on the relative specific activities of MFO in the two species. -

In summary, the best answer to question Q2 posed above, based on the
limited biological evidence available, appears to be the following: The relation
between administered and internal doses, under steady-state, low-level
exposure conditions, is that average internal dose per unit time is probably
proportional to average administered dose per unit time, with the constant of
proportionality being about two orders of magnitude greater in mice and in rats
than it is in humans.

DIS ION OF SPECIES DIFFERENCE

A default assumption commonly used in regulatory risk assessment is
that "mg/surface area/day is an equivalent dose between species" (Collins et
al., 1991, p. 175). This default assumption has resulted in adjusting the cancer
potency factor for B(a)P estimated from animal data upward by a factor of 12.7
in regulatory risk assessments (based on the relative surface areas of humans
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compared to mice) in calculating the Eorresponding estimated cancer potency
for humans (Collins et al., 1991). Modern biologically-based approaches to risk
assessment replace this default assumption with the alternative, more specific
assumption that average concentration of carcinogenic metabolites in target
organs or cell populations per unit time is an equivalent dose between species.
Instead of adjusting carcinogenic potency estimated from mouse data upward
by a factor of more than 10 to convert to humans, the biological considerations
in this section suggest that it might be more appropriate to adjust the mouse
potency estimate downward by a factor of 100 or more. This would reduce
estimated human carcinogenic potency (based on experimental data from mice)
by about three orders of magnitude compared to previous estimates (Collins et
al., 1991).
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ESTIMATING THE RISK OF CANCER ASSOCIATED WITH A
LOW-LEVEL PAH EXPOSURE

CONCEPTS FOR CANCER POTENCY CALCULATIONS

As previously stated, the US EPA considers that-thereis no direct
evidence in humans specifically linking B(a)P exposure to increased cancer
risks. However, B(a)P is classified by US EPA as a "probable" human
carcinogen, primarily because it is known to be a carcinogen in animals at
sufficiently high doses. However, a wealth of data suggest that, at the
concentrations of interest in the Celotex case, B(a)P has no detectable
carcinogenic effect even in animals. Therefore, a final, key source of uncertainty
is that it is not known whether the concentrations of B(a)P found in the soil
samples from yards near the industrial property can cause cancer in
experimental animals. If not, then the basis for estimating human cancer risks
from these soil concentrations is weakened.

To address questions of carcinogenic potency at low doses, it is usual to
assume that at, sufficiently low doses, lifetime probability of tumor is well
approximated by a polynomial: '

Pr(tumor if dose is X) = qg + QX + qoX2 + ... + GX". -

For very low doses (as x approaches zero), the behavior of this function is
determined by qy. If q4 is positive, then it dominates the dose-response function
at low doses: it is just the slope of the dose-response function (measured in
units of expected tumors per unit of exposure) at-the origin. In this case, qq is
called the potency of the carcinogen. On the other hand, if q; = 0, then the
cancer potency quickly approaches zero at low doses. These are the two
qualitatively different behaviors generally considered to be possible for
carcinogen dose-response relations in the usual regulatory framework for
cancer risk assessment. In the absence of specific evidence to the contrary, the
EPA traditionally assumes that carcinogen dose-response functions are "low-
dose linear", meaning that q4 > 0.
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ANALYSIS OF LOW-DOSE CANCER POTENCY FOR B(a)P

For B(a)P, there is strong experimental evidence: from multiple species
and experimental designs that the dose-response function is not low-dose
linear. For example, the following table, adopted from the regulatory risk
assessment by Collins et al. (1991), shows a clear threshold-like nonlinearity in
tumor risk as a function of dose. Between 40 and 50 ppm, the dose-response
relation crosses an apparent threshold (or strong upward nonlinearity) above
which there is strong carcinogenic potency. Below 40 ppm, carcinogenic
potency appears to be weak or non-existent.

TABLE: MICE EXPOSED TO B(a)P BY FEEDING SHOW A NONLINEAR DOSE-
RESPONSE RELATION

Exposure (ppm) Incidence of gastric tumors
0 0
10 0
20 0.043 (= 1/23)
30 0 -
40 0.025 (1 / 40)
45 © 0.10 (4/40)
50 0.71 (24 / 34)
100 ~0.83(19/23)

Other data sets, for mice exposed to B(a)P by subcutaneous injection (Bryan
and Shimkin, 1943) or skin painting (Wynder and Hoffman, 1959), for Syrian
Golden hamsters exposed by inhalation (Thyssen et al., 1981), and so forth
show a similar patteri’{ of a relatively abrupt, well-localized transition from no
significant tumor risk to very high tumor risk as concentration increases by less
than one order of magnitude.

Such data provide strong evidence of a dose-response relation that is
nonlinear at low doses (e.g., at doses for which the response probability is less
than 0.01.) Indeed, in order to fit low-dose linear risk models, regulators have in
the past had to discard some of the high-dose data (Collins et al., 1991). A
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formal statistical test of the null hypothesis of low-dose linearity would reject it
overwhelmingly in favor of the alternative hypothesis of low-dose nonlinearity.

The implications of low-dose nonlinearity for risk assessment can be
dramatic. For example, the dose-response data in the preceding table suggest
that there is no detectable excess tumor risk at ingested B(a)P concentrations
below about 30 ppm in mice. If humans are less susceptible than mice, as
suggested by comparing enzyme activity levels across species, then no excess
cancer risk would be expected at concentrations of 30 ppm or less in humans,
based on the mouse data. Only by ignoring some of the data points and
applying default assumptions and risk models that have not been customized to
reflect B(a)P-specific data is it possible to reach the opposite conclusion, that
there are excess cancer risks at concentrations below 30 ppm. In particular,
regulatory risk assessments of B(a)P have assumed low-dose linearity, rather
than treating it as a hypothesis to be tested based on experimental data. If the
" hypothesis of low-dose nonlinearity is accepted, as the data seem to require,
then both the expected risk and upper confidence bands on expected risk
approach zero at low doses (e.g., 30 ppm and below).

D ION OF REGULATORY DEFAULT A MPTIONS FOR B(a)P

The default assumptions used in regulatory risk assessments of B(a)P
guarantee a positive answer to the question of whether B(a)P at low doses
creates excess risk, by assuming low-dose linearity. But low-dose linearity is
contradicted by all of the experimental data, suggesting that the default
assumption is not appropriate for B(a)P. Some of the other default assumptions
should also be revised. For example, the estimated cancer potency in mice
based on the empirically observed proportions of mice developing tumors was
arbitrarily multiplied by a factor of 40 to reflect an assumption "that cancer
incidence increases as the third power of age" (Collins et al.,, 1991). This is
clearly inappropriate when mice at the higher dose levels already have tumor
incidence rates in excess of 70%. Assuming that 40 times as many mice would
have developed tumors had the experiment been continued longer is
incoherent. Thus, it appears that a thorough review of default assumptions is in
order for B(a)P, and that several of the assumptions must be refined or replaced
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in order to achieve a more realistic assessment of B(a)P-induced cancer risks at
concentrations below about 30 ppm in food.

At the industrial property, humans are exposed to orders of magnitude
lower doses than those in the mouse experiment. Therefore, any plausible low
dose nonlinear dose-response function would predict no significant excess
risks to humans based on their exposures to PAHs in soil. The best estimate of
absolute risk due to soil PAHSs is that it is indistinguishable from zero.

DI ION OF PAHs OTH HAN B(a)P

Most of this appendix has concentrated on B(a)P as a surrogate for other
PAHs. It is worth considering whether the complex mixture of soil PAHs might
present a greater cancer risk than would B(a)P alone. However, there is
evidence (e.g., Cherng et al., 1996; Springer et al., 1989) that antagonism
among the PAHs is more likely than synergy. Also, at the low concentrations
involved, any such interactions are likely to be weak. Therefore, the two main
conclusions are not changed by considering that there are multiple PAHs. It is
still the case that (i) Previous risk assessments for B(a)P have used default
assumptions that are not appropriate for B(a)P; and (ii) The empirical dose-
response data for B(a)P suggests that soil PAHs contribute negligibly to cancer
risks in the vicinity of the industrial property.
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Women in the United States
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For the U.S. population, we fit bivariate distributions to estimated numbers of men and women
aged 18-74 years in cells representing 1 in. intervals in height and 10 Ib intervals in weight. For
cach sex separately, the marginal histogram of height is well fit by a normal distribution. For men
and women, respectively, the marginal histogram of weight is well fit and satisfactorily fit by a
lognormal distribution. For men, the bivariate histogram is satisfactorily fit by a normal distribution
between the height and the natural logarithm of weight. For women, the bivariate histogram is
satisfactorily fit by two superposed normal distributions between the height and the natural loga-
rithm of weight. The resulting distributions are suitable for use in public health risk assessments.

KEY WORDS: Height; body weight; univariate; bivariate; distribution; simulation.

1. INTRODUCTION

For many years, people analyzing public health risks
at or near hazardous waste sites have assumed that all
adults weigh 70 kilograms (kg), although some analysts
have assumed different weights for men and women.
Point estimates now appear routinely as standard as-
sumptions in guidance manuals published by the U.S.
Environmental Protection Agency (EPA) for the ““Su-
perfund’’ and related programs (e.g., Ref. 1). More re-
cently, the EPA has published a simple table of arithmetic
means and standard deviations for body weights of men,
women, and men and women together in different age
groups (Ref. 2, p. 5-5). This most recent Agency ap-
proach stops considerably short of the continuous curves
of mean body weights (with error bars) reported in the
“‘Report of the Task Group on Reference Man.”’®

In this manuscript, we examine data on the height
and weight of adults published by the U.S. Public Health
Service and fit bivariate distributions to the tabulated
values for men and women separately. Based on the

! Alccon Corporation, P. O. Box 2669, Harvard Square Station,
Cambridge, Massachusetts 02238-2669.

second National Health and Nutrition Examination Sur-
vey (NHANES II), conducted from February 1976 through
February 1980, the U.S. Public Health Service has pub-
lished extensive tables of heights and weights of the U.S.
civilian noninstitutionalized population from six months
to 74 years of age. In the field survey, trained exam-
ination teams tabulated the height and weight of 5916
men and 6588 women in the age range 18-74 years.
After statistically adjusting the raw data to reflect the
whole U.S. population aged 18-74 years with regard to
age structure, sex, and race, the U.S. Public Health Ser-
vice published the results shown in Table I (for an es-
timated 67,552 thousand men) and Table II (for 74,167
thousand women). (In the original publication, Tables
27 and 28 suffer from minor discrepancies in the mar-
ginal counts, corrected here by resumming the rows and
columns.)

Tables I and II, respectively, report the estimated
number of men and women in the U.S. in the age range
of 18-74 years grouped in cells representing 1 in. inter-
vals in height and 10 Ib intervals in weight. As expected,
the (adjusted) data show (i) that men are taller and weigh
more, on average, than women, and (ii) that taller people
of cither sex, on average, weight more than shorter peo-

0272-4332/92/0600-0267306.50/1 © 1992 Society for Rusk Analysis
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Table I1. Number of Women 18-74 Years of Age, by Weight and Height, Unites States, 1976-1980 (Number of Persons in Thousands)~¢

Weighr 100- 110~ 120- 130- 140- 150- 160- 170- 180- 190- 200- 210-
Height <90 90-99 109 119 129 139 149 159 169 179 189 199 209 219 2220 True
n) (b)) @) (@) (@ (@) (@b @b (@) () () () () (b) (b) (b) tol
<S5 7 8 1 25 7 715 80

55 13 4 26 12 3 13 8 . 107
56 3] 51 12 4 S 25 44 25 6 296
57 44 91 107 90 ss 1S 6 26 24 9 18 4l 36 695
58 93{ 164 132 338 317 147 78 120 35 68 27 14 34 3| 42 1612
59 so| 196 262 552 342 365 297 201 123 116 6 46 30 31 2680
60 86| 267 538 621 T2 TIS 451 334 261 239 128 99 5S4 30| 40 4645
61 12| 368 754 1286 1355 1089 877 807 439 308 269 240 123 110| 164 8201
62 14| 258 938 1660 1899 1306 1117 728 583 448 305 227 130 117| 218 9948
63 32 165 843 1729 1776 1600 1565 1006 817 655 477 357 277 151| 283 11,733
64 30 S31 1168 1653 1936 1475 950 741  S13 404 274 117 198] 280 10,270
65 64 283 873 1582 2162 1183 1201 693 396 455 269 156 109] 516 9942
66 10 76 705 804 1365 902 696 S09 255 193 213 116 84| 253 618
67 32 188 514 740 605 33 338 38 275 1S5 106 67| 253 3990
68 10 8 213 488 369 336 193 41 99 95 8 14| 106 2131
69 33 98 135 266 125 214 119 43 28 93 1154
70 6 38 56 52 19 46 25 3 25
271 16 16 S5 42 30 28 15 4 51 257

True total 362 1677 4572 9363 11,420° 12,328 9435

7023 5047 3621 2753 2081 1232 887 2366 74,167

¢ Source: Ref. 4, Table 28.
® Height without shoes.
€ Weight with clothes, estimated as ranging from 0.20-0.62 Ib.

¢ Numbers in cells scaled up to reflect size of ‘population; only 10,339 women actually examined. -

z-score. We used ordinary least sﬁuares- to fit the best
straight lines through- the appropriate variables.. .

-~ 2 1,

3.2. Results for the Marginal Distributions

For men, Figs. 1 and 2, respectively, show the mar-

ginal cumulative values and associated: z-scores: for_ Ht.~ -

and InWt. The straight lines for both Ht and InW%, fit to
the points by ordinary linear. regression,: have R? values
of 0.999. From the intercepts.and-slopes of the, regres-

sion lines,® we estimate values (i) for py,.and oy, and; -
(i) for wyw and oyu, as shown:in Table-III. The ex- -

cellent visual fits and the high: R? values for the best-fit-
line for At and InW? support the-inference that the-mar--
ginal distributions for Ht and InW¢ for men are, both
Gaussian in form. - ,

For women, Figs. 3 and 4, respectively, show the
marginal cumulative values and associated z-scores for
Ht and InWt. These straight lines, also fit to the points
by ordinary linear regression, have R? values of 0.999
and 0.985, respectively, for Ht and InWt. From the in-
tercepts and slopes of the regression lines, we estimate

values for the four parameters as shown in Table III.
The close visual fit and the high R? value for the best-
fit line for Ht for women support the inference that the
marginal distribution is Gaussian in form. The corre-
sponding inference for InWt for women is weaker but
adequate.

4. CHARACTERIZATION OF BIVARIATE
DISTRIBUTIONS

4.1. Methodology for the Bivariate Distributions

As a first step in fitting a bivariate distribution to
Ht and InWz for each sex, we estimated the Pearson
(linear) correlation coefficient (denoted p) and the Spear-
man (rank) correlation coefficient (denoted p,,,) be-
tween Ht and InWt using the observed binned data for
men and women.
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Fig. 3. Women: height vs. z-score. Fig. 4. Women: natural log of weight vs. z-score.
Table III. Estimated Parameters for Univariate and Bivariate Normal Distributions
Women
Men ) ~ L Fraction
from cach
Source: Variable Estimated p Estimated o Estimated p Variable Estimated u Estimated o Estimated p distribution
Marginals analysis Hr  69.12 2.85 He  63.68 2.68
InWe 5.13 0.17 InWe 4.96 0.20
Pearson correlation 0.38 0.22 .
Spearman correlation 0.37 0.22
Minimization of x? statistic H 69.18° 287 Ht 6381 2.68
assuming one distribution - 0.42 0.24
each for men and women InWe 5.14 0.17 laWr 4957  0.21"
Minimization of x? statistic A, Hr,, 63.11 276
assuming two distributions - ’ ' 0.41 = 0.46
for women - - InWe,,  5.06 0.24
» Heg  64.36 249
» 0.44 0.54
InWet 4.86 - 0.14

¢ These parameters are for the first of two distributions for. women.

® These parameters are for the second of two distributions for women.

eters are similar to those estimated earlier by marginal
analysis and by Pearson and Spearman correlations for
the noncensored data. From the bivariate analysis, we
estimate the arithmetic average for height and weight as
69.2 in. and 173.2 Ib, respectively.

For women, a similar calculation with a single bi-

variate normal distribution gave poor results in terms of
the total x? statistic and in terms of patterns in the op-
timized residuals. Table IIl shows the optimized para-
meters from this calculation, but we consider them less
useful in practice. The five optimized parameters are -
also similar to those estimated earlier by marginal analy-

e
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Table V. Optimized Residuals for Each Bin for Women Assuming Two Distributions®

LaWeight

Height 3.81 4.01 4.17 4.32 4.44 4.55 4.65 4.74 4.83 4.91 4.98 5.04 5.11 5.16 5.22 5.27 5.32 5.37 5.42 5.46 5.50 5.54 5.58 5.62
(in}) (Ib) (Ib) (Ib) (b) (b) (Ib) () (Ib) (W) (Ib) (Ib) (Ib) (Ib) (Ib) (Ib) () (b) (Ib) (Ib) (Ib) (Ib) (Ib) (ib) (Ib)

SL.S

52.5

53.5

545 -7 -1 =2 2 18

55.5 -11[-15 -6 -20 -13 13 2 24 9 5 -1 -1 0o 0
56.5 101 23 -37 -12 8 -13 16 5-13 -8 -5 3 -2 -1

5.5 8 21 -5-35-58 22 4 -2 -12-24 -6 9 -5 1

58.5 41] 40 -90 73 73 -53 -78 2-5 9 -12-10 19 -6

59.5 -15) 7-124 52-133 -2} -3 -29 -48 -6 -15 -9 -5-22 2
60.5 16| 21 -42-208-104 103 -60 —55 -35 20 —28 -8 -16-15]|-25
61.5 =511 97 11 97 8 39 95 225 -4 -27 22 64 2 304 39
62.5 -35{ 7 138 209 207-153 40 -48 3 4 -31-21 -46 -4| 15
63.5 1]-29 122 239-150~-170 240 78 146 145 83 58 57 -6 0
64.5 -17]-94 -8-108-193 93 40 -44 49 0 7-35-118 24|-56
65.5 -8} -2 ~-51 -33 106 540-160 257 S5 —60 106 -6 —59-55| 173
66.5 -3]-19 -94 174-175 171-167 -85 —14-105 -75 2 -53-49|-46
67.5 -1j-11 —-40 -68 -22 11-109-217 -39 129 94 14 -8-25] 30
68.5 0] -3 -15 -17 -29 120 -28 5 -41-115 -9 13 16-40|-36
69.5 -1 26 -33 9 -18 83 -41 90 35 -14-14 -33-28| 15
70.5 . 0 -2 -9 -21 —-14 -14 -17 -36 7 -26 6 —-12-12|-36
71.5 14 -8 -3 26 10 1 6 -15. 4 -4 -7} 29
72.5

73.5

74.5

75.5

* Optimized residual refers to the difference between the predicted and observed values in a bin obtained when the sum of the chi-squares is

minimized.

We calculated the observed marginal x? values by.

summing the observed and. expected binned-data (ob- ...

tained from minimizing the total.)? statistic for the cu--,

mulative distributions) across Ht or In#% and by calculating. .-

the marginal optimized residuals, the marginal. x2 values;.,
and the sum of the marginal x? values. For example, we.
obtained the x? value for height between 65 and 66 in.
by summing the observed and expected binned data for.,
this height interval across all weight categories.. The re-
sulting sum of the observed binned data minus that for
the expected equals the optimized residual for the 65--
66 in. height interval. We then estimated the total mar-
ginal x? as, for example,

(©, - E)?
Z E

i

over the height intervals.

The final x? statistic for each marginal distribution

~ may be compared- with the x?, o5 value with. degrees of

freedom equal to the. number of Ht or InWt categories
minus one.®* For both men and women, the observed
x? values, the degrees of freedom, the x?, o5 values, and
the p-values for the observed x? values for the marginal
analyses are shown in Table VI. Because all of the ob-
served x2 values for men exceed their respective x3 g5
values (i.e., p-values. < 0.05), we reject the nuil hy-
pothesis and conclude that the observed and predicted
distributions do not come from the same population. As-
suming a single distribution for women, we reject the
null hypothesis for Ht and InWr since the observed x2
values also exceed their‘respective x%g o5 values (i.e., p-
values < 0.05). Assuming two distributions for women,
the observed x2 value for Ht exceeds its x?,qs Vvalue,
while the observed x2 value for InH7 is less than its x% o5
value (i.e., p-value > 0.05). Consequently, we reject
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ifies the simulation for men, the simulation for women
requires the use of a Bernoulli trial to select between
two distributions, one for each subpopulation.

7. SUMMARY AND DISCUSSION

Bivariate data for the height and weight of men and
women between the ages of 18 and 74 years are well fit
by normal distributions between the height and the log-
arithm of weight. For men, a.single bivariate normal
distribution fits the data well, and for women, a pair of
superposed bivariate normal distributions fits the data
well. The final distributions of height and weight for
men and women are suitable and practical for use in
public health risk assessments using Monte Carlo sim-
ulation to estimate full distributions for exposure and
risk.
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Abstract

In both deterministic and probabilistic human health risk assessments, body weight
plays a crucial role in estimating exposure doses and the subsequent health risks.
Based on results published from the NHANES Il Survey (National Health and Nutrition
Examination Survey, 1989), we use exploratory data analysis, probability plots, and
regressions to fit normal and lognormal distributions to percentiles of body weight for
female and male children as a function of age from 6 months to 20 years. Lognormal
distributions give consistently strong fits to the NHANES Il data across all age groups
for each gender, a result consistent with previously published results for adult women

and men. We also demonstrate the practical use of these results in risk assessments.
Introduction

In 1983, the National Academy of Science published a method often used to estimate
the health risks associated with exposure to hazardous chemicals in the environment
(NAS, 1983). In a deterministic risk assessment, an analyst combines point values
representing the intensity, frequency, and duration of exposure with point values for
toxicity to estimate a health risk. Each of these point values may be an average,
conservative, upper-bound, or worst-case value. We have found that risk assessors

often estimate health risks for exposure scenarios that will rarely if ever occur because
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the combination of point values often falls far above the 95th percentile of the full range

(Burmaster & Harris, 1993).

Using probabilistic techniques, a risk assessor can estimate full distributions of
exposure and risk. In a probabilistic risk assessment, the analyst specifies a probability
density function - PDF (or a cumulative distribution function - CDF) for each input

variable to estimate full distributions for exposure and risk.

To conduct a probabilistic risk assessment that includes children in the exposed
population, a risk assessor needs parametric or nonparametric distributions for the body
weights of children as a function of age. The US EPA has published averages for
children's body weights grouped in three-year intervals; birth to 3 years, 3 years to 6
years, 6 years to 9 years and so on to 18 years (US EPA, 1989, EFH, Table 5-3), but
the Agency's manual does not give full distributions for the body weights as a function of
age. As children's body weights change with age, many analysts working on
deterministic risk assessments return to the US EPA's source, the NHANES Il Survey
completed by the National Center for Health Statistics (NCHS, 1987), to use the data in
single year increments. By extension, we return to the same source to fit probability

distributions for use in probabilistic risk assessments.

NHANES Ii Survey Design

The NHANES Il Survey collected information on the nutritional status and related factors
to determine the prevailence of overweight people in the United States (US) non-
institutionalized population. Conducted by the National Center for Health Statistics
(NCHS) from February 1976 through February 1980, the target population was civilians

in 50 states from 6 months through 74 years of age.

The entire NHANES Il sample included 27,801 persons, 91 percent of whom were

interviewed. Of these, 20,322 were interviewed and examined, for a response rate of
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73.1 percent (NCHS, 1987). The body weights of 4,079 females and of 4,379 males less
than 20 years of age were collected and reported after the data were statistically
adjusted for non-response and probability of selection and then post-stratified by age,

sex, and race to reflect the whole US population (Exhibit 1; NCHS, 1987).

* As described in Appendix 1 of the NHANES Il Survey, the survey used a stratified,
multistage design that selected samples at each stage with a known probability of
sampling females and males. In hierarchical order, the stages of selection were: primary
sampling units (PSUs), which are counties or small groups of contiguous counties;
census enumeration districts; segments (clusters of households); households; and
finally sample persons. The list consisted of all housing units located in the 1970
Census of the Population (NCHS, 1987). Younger and older age groups were over-

sampled and approximately one person per sample household was selected.

The NCHS derived national estimates through a multistage estimation procedure with
three main steps: (i) inflation by the reciprocal of the probability of selection,

(i) adjustment for non-response, and (iii) post-stratification by age, sex, and race.
(NCHS, 1987, Appendix | - Statistical Notes). The probability of selection is the product
of the probabilities of selection from each stage of selection in the design - PSU,
segment, household, and sample person to reduce inflation by the reciprocal of the
probability of selection (NCHS, 1987, Appendix | - Statistical Notes). To adjust for non-
‘responses, the estimates were inflated by a multiplication factor that increases the
estimates based on examined persons to the value that would have been achieved if all
sample persons had been examined (NCHS, 1987, Appendix | - Statistical Notes). To
post-stratify by age, sex, and race, estimates of the number of examined persons were
adjusted by ratio within each of the 75 age-sex-race cells to independent estimates,
provided by the US Bureau of the Census, of the population for 1 March 1978, the

approximate midpoint of the survey. The ratio adjustment used a multiplication factor in
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which the numerator was the US population and the denominator was the sum of the
weights adjusted for non-response for examined persons bringing the population
estimates into close agreement with the US Bureau of the Census estimates of the

civilian non-institutionalized population (NCHS, 1987, Appendix i - Statistical Notes).

Exploratory Data Analysis

The NCHS reported the NHANES Il results as percentiles of body weight (pounds) for
each age group and each gender. (Each age group begins on the birthday of the child
and continues for 364 days). In Exhibits 1A and 1B, the percentiles of body weight
(converted to kilograms, kg) are almost the same for females and males from 6 months
to approximately 10 years of age. As expected, the differences between females and
males widen at puberty. For each age group and each gender, Exhibits 1A and 1B show
the number of children examined, the mean body weight for the single year increment,
and body weights for 9 percentiles: Sth; 10th; 15th; 25th; 50th; 75th; 85th; 90th; and the
95th.

Exhibit 2 graphs female's and male's body weights as a function of age (values are
plotted at the mid point of the age group). We note that the 95th percentiles of body
weight for the older groups of children are further from the median than the 5th
percentiles, thereby indicating positively skewed distributions (Chambers et. al., 1983;
Cleveland, 1985; and Tukey, 1977). We also note that all age groups (except the first)
have a mean value larger than the median, another indication of positively skewed
distributions. The panels in Exhibit 2 also reveal the relatively large sampling errors and

statistical fluctuations in the lower and higher percentiles for ages greater than 10 years.

We used Microsoft Excel™ to graph the empirical CDFs for female's and male's body
weight on both linear and logarithmic scales. (Throughout this analysis, we use natural

logarithms). As an example for one age group, Exhibit 3 shows the percentile body
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weights for females and males from 12 to 13 years of age. (As we demonstrate later,
females and males at this age have the greatest variance in their weights, i.e., these
age groups are the least homogeneous for each gender.) In general, if percentile values
come from a normal distribution, then the empirical CDF on a linear scale will have a
symmetric sigmoid shape. Similarly, if percentile values come from a lognormal
distribution, then the empirical CDF on a logarithmic scale will have a symmetric
sigmoid shape. It is usually impossible, however, to determine how well a set of data or
percentiles fits a distribution by looking at an empirical CDF. The linear interpolations of
the CDFs on a linear scale in the top panel of Exhibit 3 do not appear to be significantly
more or less symmetric than those on a logarithmic scale in the bottom panel. By
graphical inspection alone, we could not determine whether the normal or lognormal

distributions fit the NHANES |l percentiles better.

The Probability Models

To model the percentiles of body weight, we investigated several symmetric and
asymmetric distributions and then focused on the normal distribution and the lognormal

distribution. For the normal model, we used this form:
BWt ~ Ny, o) Eq !

where the parameters u, and o, correspond, respectively, to the mean and the

standard deviation of the distribution. For the lognormal model, we used this form:
InBWt ~ N(u,. o,) Eq 2

where 1, and o, have the corresponding meaning for the natural logarithm of the

distribution. Many texts present material on these distributions (e.g., Evans, 1993).
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Probability Plots and Regression Analyses

For each age group and gender, we plotted the percentile body weights on both normal
and lognormal probability plots to compare quantitatively how well the normal and
lognormal models fit the data. By design, a normal probability plot has the property that
when percentiles or data from a normal distribution are graphed, the points will fall along

a straight line (with the intercept equal to i, and the slope equal to 6,) (D'Agostino &

Stephens, 1986).
Normal Model: BWt = u + o0,z Eq3

Similarly, a lognormal probability plot has the corresponding property that when
percentiles or data from a lognormal distribution are graphed, the points will fall along a

straight line (with the intercept equal to [i, and the slope equal to &,).
Lognormal Model: InBWt = u, + 0, ez Eq 4

In each case, the abscissa plots the z-score, equivalent to the variate of a standardized

(unit) normal distribution (Gilbert, 1987; Abramowitz & Stegun, 1964).

We created normal and lognormal probability plots for each age group and each gender.
Exhibits 4 and 5 are examples presenting normal and lognormal probability plots for
female's and male's body weights 12 to 13 years of age. The points on each graph
represent the percentiles reported by the NHANES Il Survey, and each straight line

represents a least-squares linear regression (Eqs 3 and 4).

From visual inspection of the 80 plots (20 normal and 20 lognormal probability plots for
each gender), we observed that the linear regressions on the lognormal probability plots
fit the percentile points much better than those on the normal probability plots. To

compare the two models quantitatively, we examined several goodness-of-fit measures
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for the regressions (D'Agostino & Stephens, 1986). In Exhibits 6 and 7, the t statistics
around the fi, and the &, values indicate that the lognormal distributions consistently fit
the points better than do the normal distributions. Also, the adjusted R2 values ( aR?2)
and the F ratios for the regressions show that the lognormal distributions consistently fit
the percentiles better than do the normal distributions. From these graphical and
quantitative comparisons, we conclude that the lognormal distributions consistently give
strong fits to the percentile of body weights for each gender across all age groups, a
finding in turn consistent with results previously published for adult women and men in

the United States (Brainard & Burmaster, 1992).

Lognormal Distributions as a Function of Age m S Q—ECJ('? 91‘\

it 8 graphs the [, and the &, values estimated from the lognormal probability plots
for femahss and male's body weights as a function of age. The top panel shows that the
i1, values for' females and males increase relatively smoothly and equally until diverging
near age 15 years.\he &, values for each gender, however, show much larger relative
fluctuations across the age groups, another manifestation of the relatively large

sampling errors and statisticaMluctuations in the NHANES |l results. Note the vertical

scales in the two panels are differe

For interpolation and simulations in Mathematica™ (Wolfram, 1991), we fit nth-order
polynomials to the ji, and &, values for each genger as a function of age using this

functional form:

yt) =co+cret+co*t2+ ... +chetn for 05<t<

where y is the fitted variable, t is the age in years, and the n are conse
We write this polynomiai more compactly as the tuple of coefficients, name

..., Cn}. For f1, and &,, we fit polynomials in Eq 7 with2<n < 7.
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Balancing the competing objectives of fidelity of fit, parsimony of expression, and
commwpality of functional form for females and males, we found that quadratic
polynomialg gave excellent fits to the fi, values and that quartic polynomials gave

adequate fits tathe &, values as a function of age. For females, we found:

fi, = {2.05065, 0494101, -0.00447392}, and
&, = {0.164669, -0.0361Q79, 0.00943697, -0.00070061, 0.0000158666}

with aR2 = 0.995 and 0.791, respacgtively. For males, we found:

i, ={2.17253, 0.164478, -0.00278956}, and

6,= {0.165078, -0.0435777, 0.010562, -0.0Q0752062, 0.000016586}
with aR2 = 0.996 and 0.755, respectively.

For each gender, Exhibit 9 presents the fit of the quadratic pQlynomials superimposed

on the point estimates ( f,) and error bars (+ &,) for body weigh\as a function of age.

In this section, we fit polynomial functions of age to the [, and the &, alues for each

gender. These polynomials fit and smooth the time dependencies for the \and the &,
values previously fit for each age group. In the appendix, a colleague presents
alternate approach, based on the method of maximum likelihood, that fits the lognoMal

parameters and the time dependencies in one unified optimization for each gender.

Practical Application of these Results

In this section, we discuss three applications of these results in probabilistic risk

assessments which include children in the exposed population.

First, a risk assessor may include two random generators, one for each gender, for each

age group in the study. This direct method has a high computational cost.
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Second, a risk assessor may build a custom, parametric generator for a particular
problem. To illustrate this approach, we consider a hypothetical situation for which the
population consists of an equal number of females and males from 6 months to 7 years
of age. Using lognormal distributions with the i, and &, values taken from Exhibits 6
and 7, we had Crystal Ball™ simulate 1,000 individuals in each age group for each
gender. In Exhibit 10, we pooled these values, plotted them on a lognormal probability
plot using Mathematica™, and estimated j, = 2.69 and &, = 0.326 for this hypothetical
population from the least-squares linear regression (aR2 = 0.991). Exhibit 11 shows the
resulting PDF and CDF for this mixed group of children. This method provides an
excellent fit for the central 95 percent of the distribution in this example, (e.g., | z 1< 2),
but it fails when the population includes a wider age range because the pooled values

no longer follow a parametric distribution.

Third, a risk assessor may build two custom generators, one for each gender, based on
the polynomial models in this main report or on the alternative models in the appendix.
The generators so constructed take the age range of interest as an input. If well
designed, these modules can be re-used in many different assessments in the sense of
object-oriented programming. In a future report, we will illustrate this most generai

approach.
Discussion

Starting for the most recent and best available data for the 50 states, we have found
that lognormal distributions give consistently strong fits to the body weights of children,
ages 6 months to 20 years. This paper and its appendix present two alternative and
equally practical ways to model and then simulate the age dependencies of these

lognormal distributions for each gender.
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Exhibit 1A B

Female's Body Welghts; 6 Months to 20 Years of Age

Number o 5th 10th 15th 25th 50th 75th 85th 90th 95th

Age Examined « Mean Percentile  Percentile Percentile Percentile Percentile  Percentile  Percentile  Percentile  Percentile

(years) (n) + (ko) {kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg)
6 months to 1 177 e 88 6.6 73 7.5 7.9 8.9 9.4 10.1 10.4 10.9
1tlo2 336 « 108 8.9 9.1 9.4 9.9 10.7 1.7 12.4 127 13.4
2t03 336 ¢ 130 10.8 113 11.6 12.0 12.7 13.8 14.5 14.9 15.9
Jto4 366 « 149 1.7 123 129 13.4 14.8 16.1 17.0 17.5 18.4
4105 396 ¢ 170 13.8 14.3 14.6 15.2 16.7 18.4 19.3 20.2 21.2
5to6 364 « 196 15.3 16.2 16.7 17.3 19.0 21.2 22.8 247 26.6
6to7 135 o 222 171 17.8 18.6 19.3 213 23.8 26.6 29.0 29.6
7t08 157 e 247 19.2 19.5 19.9 215 238 271 28.7 30.3 341
8t0 9 123 « 279 215 224 233 244 27.6 30.2 314 333 36.5
9t0 10 149 ¢ 320 23.0 25.0 25.9 27.0 29.7 336 394 43.4 485
10to 11 136 « 36.1 258 275 29.1 31.0 345 395 44.3 45.9 49.7
11to 12 140 e 419 29.9 304 31.4 340 404 459 511 56.7 60.1
1210 13 147 e 465 324 35.1 36.8 39.2 454 52.7 58.2 60.4 64.4
1310 14 162 ¢ 510 355 39.1 39.5 442 49.1 55.3 61.0 66.6 76.4
1410 15 178 « 548 403 42.9 437 47.5 53.2 60.4 65.8 67.7 753
15to 16 145 e 552 441 452 46.6 48.3 53.4 59.7 62.3 65.6 767
16 to 17 170 + 58.1 44.2 47.4 48.9 51.3 55.7 62.6 69.0 73.4 76.9
17 to 18 134 « 597 445 48.9 50.5 §2.3 58.5 63.5 68.3 71.7 81.9
1810 19 170 « 590 453 49.6 50.8 52.9 56.5 63.1 66.1 70.2 781
19 to 20 158 s 60.2 48.6 49.8 51.8 54.0 57.2 . 645 70.7 75.0 78.2

4079 o
Source: National Center for Health Statistics: Anthropometric Reference Data and Prevalence of Overweight, US 1976-80
Converted from Pounds to Kilograms
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Exhibit 1B

Male's Body Welghts; 6 Months to 20 Years of Age

Number 5th 10th 15th 25th §0th 75th 85th 90th 95th
Age Examined ¢ Mean Percentile Percentile  Percenlile  Percentile  Percentile  Percentile  Percentile  Percentile  Percentile

(years) (n) _+_kg) {kg) {kg) (kg) kg) (kg) (kg) (kg) (kg) (k)
6 months to 1 179 e 94 75 7.6 8.2 8.6 9.4 10.1 10.7 10.9 115
1102 370 ¢« 118 9.7 10.0 10.4 10.8 11.7 12.6 13.2 13.6 14.4
2103 375 ¢ 136 1.1 11.6 11.8 12.6 13.5 145 15.2 15.8 16.6
304 418 e 157 12.9 13.5 14.0 14.4 15.5 16.8 17.4 18.0 19.1
4t05 404 ¢ 178 14.1 15.0 15.3 16.0 17.6 19.1 20.0 20.9 222
S5to6 397 * 198 16.0 16.8 17.2 17.7 19.4 21.3 22.9 23.7 254
6to7 133 e 230 186 19.2 19.9 20.3 22.1 241 26.5 28.4 30.1
7to8 148 ¢ 251 19.7 20.8 21.2 2.2 249 26.9 28.3 29.6 34.0
8to9 147 e 283 205 22.7 23.6 247 276 30.0 331 35.6 39.2
9to 10 145 ¢ 312 241 25.7 26.0 27.1 30.2 33.1 354 38.7 43.2
10to 11 157 e 365 27.2 28.3 29.6 315 349 39.3 43.6 46.3 535
11to 12 155 s 403 26.8 28.8 31.8 335 374 46.5 52.1 57.1 61.1
1210 13 145 * 443 30.8 326 35.5 37.8 426 48.9 52.6 59.0 67.7
13to 14 173 e 499 354 37.0 38.4 40.1 48.5 56.3 59.9 64.3 70.1
1410 15 186 ¢ 572 410 445 46.5 49.8 56.4 63.4 66.2 69.0 77.2
15to 16 184 * 611 46.3 49.2 50.7 54.3 60.2 65.1 68.9 729 81.4
16to 17 178 s 67.2 515 54.4 56.1 58.7 64.5 73.8 78.2 82.3 91.3
17 to 18 173 e 66.7 50.8 53.5 54.8 58.9 65.9 72.2 76.9 82.4 890
18to 19 164 * 711 542 56.7 60.4 61.6 70.5 76.7 80.1 83.6 954
19to 20 148 e 718 56.0 58.0 60.7 64.0 69.6 78.0 84.4 86.9 92.3

— ] *

4,379 o

Source: National Center for Health Statistics: Anthropometric Reference Data and Prevalence of Overweight, US 1976-80

Conversion from Pounds to Kilograms
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Exhibit 3

Cumulative Distribution Function; Females and Males 12 to 13 Years of Age
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Exhibit 4

Normal Probability Plot Female's Body Weights;
12to 13 Years of Age
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Lognormal Probability Plot Female's Body Weights;
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Exhibit 5

Normal Probability Plot Male's Body Weights;

12 to 13 Years of Age
Weight (kg)
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Exhibit 6
Statistics for Probability Plot Regression Analyses;
Female's Body Weights 6 Months to 20 Years of Age

Normal Probability Plots pl tstat ol tstat F ratio aR2
Age: 6 monthsto 1 8.78 219.6 1.26 359 12873 0.994
102 10.91 195.1 1.39 28.4 806.6 0.990

2t03 13.06 158.3 1.47 203 4122 0.981
3to4 14.90 355.2 2.02 5§5.1 3031.6 0.997
4t05 17.08 155.5 2.28 23.7 561.1 0.986
5t06 19.98 711 3.27 13.3 177.0 0.957
6to7 22.57 66.1 3.93 13.2 173.3 0.956
7to8 24.90 65.6 4.36 131 172.5 0.955
8to9 27.84 104.2 4.33 18.5 3434 0.977

9to 10 32.83 36.5 7.14 9.1 82.4 0.911
10 to 11 36.37 86.9 7.18 19.6 384.0 0.980
11t0 12 42.21 54.8 9.51 14.1 199.3 0.961
1210 13 47.18 1151 9.90 27.6 761.5 0.990

13to0 14 51.86 47.4 11.25 1.7 138.0 0.945
1410 15 55.20 89.9 10.29 19.2 366.9 0.979
15t0 16 55.77 52.6 8.82 9.5 90.5 0.918
16 to 17 58.82 85.1 9.83 16.3 264.3 0.971
17t0 18 60.01 65.2 9.93 12.3 151.8 0.950
18to 19 59.18 74.4 8.77 12.6 159.0 0.952
1910 20 61.09 77.2 9.16 13.2 175.1 0.956

Lognormal Probability Plots u2 tstat a2 tstat F ratio aR2
Age: 6 monthsto 1 2.16 3435 0.145 26.4 695.3 0.989
1t02 2.38 794.5 0.128 48.7 2372.3 0.997
2to 3 2.56 618.6 0.112 30.9 955.4 0.992
3to 4 2.69] 1554.1 0.137 90.3 8147.3 0.999
4t05 2.83 7441 0.133 40.1 1609.2 0.995
5t0 6 2.98 327.8 0.163 20.4 418.2 0.981
6to7 3.10 294.2 0.174 18.8 355.3 0.978
7t08 3.19 319.5 0.174 19.9 395.6 0.980
8to 9 3.31 585.7 0.156 315 992.8 0.992
9to 10 3.46 187.2 0.214 13.2 175.2 0.956
10to 11 3.57 636.0 0.199 40.4 1636.1 0.995
111012 3N 318.0 0.226 22.1 489.6 0.984
1210 13 382 11026 0.213 70.1  4911.1 0.998
13to 14 3.92 322.0 0.216 20.3 413.6 0.981
14t0 15 3.99 732.4 0.187 39.3 15419 0.995
15t0 16 4.00 303.7 0.156 13.5 182.4 0.958
16t0 17 4.06 539.5 0.167 254 644.2 0.988
17to 18 4.08 399.4 0.165 18.5 340.7 0.977
18to 19 4.07 427.0 0.147 17.7 313.1 0.975
19 to 20 4.10 427.0 0.149 17.7 314.2 0.975

Alceon



Normal Probabllity Plots

Age: 6 monthsto 1
1to 2
2t03
3to 4
4t05
5to6
6to7
7to 8
8to9
9to 10

10to 11
11to 12
12to 13
1310 14
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18to 19
1910 20

Lognormal Probabllity Plots
Age: 6 monthsto 1
1to 2
2t03
3tod
4t05
5t06
6to7
7108
8to9
9to 10
10to 11
11t012
12to0 13
13t0 14
14t0 15
15to0 16
16to 17
17to 18
1810 19
1910 20

Exhibit 7
Statistics for Probability Plot Regression Analyses;
Male's Body Weights, 6 Months to 20 Years of Age

pl tstat ol tstat F ratio ar2
9.39 236.2 1.23 352 12424 0.994
11.82 231.6 1.40 31.3 982.7 0.992
13.63 228.6 1.64 314 983.1 0.992
16.73 215.7 1.80 28.1 791.4 0.990
17.80 184.2 2.37 28.0 784.6 0.990
20.04 1119 2.78 17.7 313.6 0.975
23.24 69.1 3.41 11.6 1343 0.943
25.29 66.4 3.86 11.6 134.0 0.943
28.56 66.6 5.17 13.8 189.3 0.959
31.50 55.1 5.26 10.5 110.8 0.932
37.13 47.9 7.32 10.8 116.5 0.935
41.68 52.1 10.42 14.9 221.7 0.965
45.28 43.9 10.19 11.3 127.3 0.940
50.00 74.9 10.66 18.3 333.2 0.976
57.11 1125 10.25 23.1 533.2 0.985
61.00 839 9.72 15.3 233.2 0.967
67.87 78.0 11.43 15.0 225.1 0.966
67.16 97.9 11.21 18.7 348.5 0.977
71.02 75.5 11.30 13.7 188.6 0.959
72.21 1335 11.12 23.5 552.0 0.986
p2 tstat a2 tstat F ratio ar2
2.23 445.2 0.132 30.1 906.0 0.991
2.46] 11334 0.119 625 3902.3 0.998
2.60 949.0 0.120 502 2516.2 0.997
2.75 998.7 0.114 475 2255.0 0.996
2.87| 1019.2 0.133 542 2938.8 0.997
2.99 524.9 0.138 27.7 769.6 0.990
3.13 293.3 0.145 15.5 241.3 0.968
321 31941 0.151 17.2 294.6 0.973
3.33 343.0 0.181 21.3 452.8 0.983
3.43 280.0 0.165 15.4 236.7 0.967
3.59 281.8 0.195 17.5 306.8 0.975
3.69 341.3 0.252 26.7 712.0 0.989
3.78 295.6 0.224 20.1 402.3 0.980
3.88 481.6 0.215 30.4 925.2 0.991
4.02 764.8 0.181 39.4 15524 0.995
4.09 553.7 0.159 246 606.0 0.987
420 557.2 0.168 '25.4 646.8 0.988
4.19 757.3 0.167 345 11922 0.993
4.25 479.0 0.159 205 419.7 0.981
4.26] 10469 0.154 433 18776 0.996
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Exhibit 8

Values of |2 Estimated from Lognormal Probability Plots
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Exhibit 9

Polynomial Fit of p, + o, for
Female Body Weight; 6 Months to 20 Years of Age
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Exhibit 10

Lognormal Probability Plot for a Mixed Population
6 Months to 7 Years of Age;

1,000 iterations Per Gender and Age Group
Every 10th Point Plotted
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Exhibit 11

Probability Density Function for a Mixed Population;
6 Months to 7 Years of Age
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Appendix A: A direct approach for interpolation between ages

The main paper provides parameters for linear fits to the transformed empirical cumulative
distributions for weight at each age, using inverse normal or inverse lognormal
transformation; and it also provides smoothed interpolation-between-age formulae by fitting
polynomials to these parameters. For all practical purposes in risk assessment these
procedures give excellent results. From a statistical point of view, they may be viewed as
sub-optimal because (a) the methods used fail to take account of the correlations between
different empirical percentiles, (b) they fail to account for the heteroscedasticity of the
empirical percentiles, and (c) the two-stage procedure fails to take account of the
heteroscedasticity between ages'. We sketch here an extension to the approach that.
overcomes these objections, can be used to obtain parsimonious and compact expressions to
adequately represent all the data shown in Exhibit 1, and may be implemented within a
spreadsheet program. As a bonus, we design the interpolation formulae so that they can be
extrapolated a few years beyond the age-range given in Exhibit 1 without going seriously

astray.

We start with a somewhat more generalized theoretical development than is strictly necessary.

Label age groups by i, i = 1, 2,...., N, with n, people measured in age group i, with the central

' The estimates of percentage points are unbiased, so that the parameter estimates for

the distributions are also unbiased. However, they may not be efficient estimates.

A-1



age of the age group being ¢,; and let the j™ percentile in age group i be at probability P,

with
O =p10<p|l <. <p‘M'<p,M'.| =1 Eq Al

so that the M, given percentiles at age i are p,, through p,,,, and these are augmented for
convenience with 0 and 1 at each end. Let the value at the j™ percentile in age group i be at

weight w,, with

0 =W o<W, <. <W,, <w,, | S Eq A2

where again the top and bottom values are appended for convenience of notation. For this
example, we transforrn weights to a logarithmic scale, so the w are natural logarithms of
weights, and w,, is taken to be —eo. We further assume that the distribution of In(weight) at

any age is normal, with mean p(f) and standard deviation o(z), .
If all sampling had been at random from the population, the loglikelihood for the given
observations would be:

@ w,. ~h(t) - w,~n(t,)
o(r) o(t)

M

N Eq. A3
J=z nl (pu*l-pu)ln

=1 7=0 pn/*l—pu

where @ is the standard cumulative normal integral (the denominator p,,,—p, in the logarithm
has been introduced simply to subtract a constant so that J vanishes for a perfect fit). In fact,
the sample was designed as a stratified random sample, and observations were weighted

according to the sample design. However, we do not know the sampling weights, nor how



the distributions may differ in the various strata. In the absence of such information, we shall
use Eq. A.3 as a suitable approximation to the loglikelihood — and expect that this will give

more efficient estimates than the procedure used in the main paper.

All that is now required is a parameterization of the mean p(¢) and standard deviation o(r),
followed by maximization of the likelihood with respect to the parameters to obtain the best
fit. The parameterization chosen was:

(A+Br)e “"Teup Eq. A4

~(t~1,)/T,

p() =In

1+e

t-t, i Eq. A5
o(t)=a+b(1-t)exp| -

2

The first is a good fit to the general shape of body-weight curves shown in Exhibit 2, and has
the advantage of approaching a constant at large ages. The second adequately fits the
empirical values of ¢ (see Exhihit A.2 and Exhihit A.3) while also approaching a constant at

ages greater than 20.

Maximum likelihood estimates’ may now be obtained for the parameters. Exhihit A.1 shows

these estimates (and the maximum likelihood value of J) with sufficient precision to be

2 These estimates were obtained using the optimizer in Borland® Quattro® Pro 5.0 to

maximize the loglikelihood given in Eq. A.3. The cumulative normal integral & was

implemented using a custom add-in function.
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negligibly different from the optimum. These give a very good fit to all the data all at once,
as illustrated by comparing the observed mean value with the predicted value, calculated from
the predicted median and standard deviation as exp(u+0%/2). Exhihit A.4 shows the predicted
arithmetic mean and standard deviation for these fits, compared with the data points (the
standard deviation for the data is computed from the maximum likelihood fits for lognormal

distributions at each age independently).

The same approach can also be taken using the polynomial parameterization used in the main
paper. Exhihit A.5 shows the mean and standard deviation as calculated using the same order
polynomials as given in the main paper, with coefficients selected to maximize the
loglikelihood function (Eq. A.3) — these values differ somewhat from those given in the
main paper. It can be seen that the parameterization selected in this appendix does
considerably better (the maximum likelihood values for the polynomial fits are —298.62 for

femmales, and —300.33 for males).

Furthermore, the parameterization of this appendix can be extrapolated a few years beyond
the range of the data. At ages greater than 20, both median weight and standard deviation of
the weight tend to constant values, and the medians, as estimated from this data, correspond

fairly closely to standard estimates of adult body-weight.

A4



Exhihit A.1 Maximum Likelihood Parameters

Parameter Females Males Units
A 7.430 8.270 kg
B 2.073 2.021 kg/yr
C 58.63 72.27 kg
T, 1.621 1.950 yT
I 12.70 14.43 yr
a 0.1582 0.1619 —
b 0.01205 0.01322 yr!
1 6.000 7.031 yr
T, 6.582 6.530 yr
L, 7.593 7.650 yr
J -213.79 -219.44 —
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The Need for New Methods to
BackCalculate Soil CleanUp Targets in
Interval and Probabilistic Cancer Risk
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ABSTRACT

Ordinary algebra may be used to backcalculate health-based cleanup targets in
deterministic risk assessments, but it does not work in interval or probabilistic risk
assessments. Equations with interval or random variables do not follow the rules of
ordinary algebra. This paper explains the need for more sophisticated methods to
backcalculate soil cleanup targets when using interval or random variables.

INTRODUCTION

When estimating incremental lifetime cancer risk, R, associated with
environmental exposure to a single carcinogenic chemical via a single exposure
pathway, risk assessors often use equations of this fundamental form:

t
= _n}_—-l)\fl Eqn1
]

where [] indicates a product over the index. In this discussion, we assume that X s
the exposure point concentration (EPC), X is the cancer slope factor (CSF), and all
the remaining variables on the right hand side (RHS) of the equation are other
exposure variables. Adapting ideas published by the National Academy of Sciences
in 1983 (NAS, 1983), the US EPA has published many such equations for use in
public health risk assessments at hazardous waste sites (e.g., US EPA, 1989). In all
but rare instances, the US EPA has developed its formulae following the general
form of Eqn 1 to hold for positive real numbers, i.e., deterministic or point values
that do not express either variability or uncertainty in a quanuty.



New Methods to BackCalculate CleanUp Targets

In the deterministic framework, Eqn 3 is always correct, and an analyst can use
it to compute the point value for AccX, consistent with the point valuc for AccR

THE INTERVAL PARADIGM

Before discussing the probabilistic paradigm, we first consider the interval
paradigm. In this paradigm, each variable no longer takes just a point value but
instead takes a range of values within an interval to represent variability and/or
uncertainty in a quantity (Alefeld and Herzberger, 1983). An interval variable
provides no information on the relative likelihood of any value between the
minimum and the maximum. For example, an interval variable V that can take any
value from 2 to 3, including the endpoints, may be written 2 < V < 3. We consider
only positive interval variables, i.e., ones for which both endpoints are positive. We
also adopt two new notations for interval variables. First, we underscore each
interval variable, e.g., V, to distinguish one from an ordinary variable. Second, we
use a compact notation to show the range, e.g., V = [min, max].

Forward Calculations
In the interval paradigm, Eqn 1 remains the fundamental equation of risk
assessment. However, in this framework, the analyst interprets each of the variables
on the RHS of Eqn 1 as an interval variable that takes a range of positive values.
To emphasize the change in perspective, we re-write Eqn 1 as Eqn 4 with singly
underscored symbols to denote that each variable is now an interval vanable:

:-|X| E 4
= n
.y, a

In Eqn 4, R is an interval variable because each of the X, and Y is an interval
variable.

Backward Calculations

When working in the interval framework, the risk assessor must solve Eqn 5 for
the acceptable exposure point concentration (AccX,) that is consistent with the
prevailing policy for acceptable risk (AccR).

AceX, [T, X,
v, Y,

>
0
r
0
n

Eqn S
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Thus Eqn 6" (and Eqn 6) are false for interval variables. The endpoints of the
incorrect interval for AccX calculated by erroneous Eqn 6 each differ by a factor of 4
from the correct values in this example. Further, the substitution of the incorrect answer,
(172, 16) as computed by erroneous Eqn 6’, directly into Eqn 5’ shows that 1t does not
meet the prevailing policy for acceptable risk. Even more unexpected, V/V # (1, 1] in
general in the interval paradigm. These results surprise many risk assessors.

This result, well known in mathematics, shows that real number algebra cannot
be used to invert Eqn 5 to Eqn 6 for positive interval variables. Under suitable
conditions, there are more sophisticated methods which an analyst can use to solve
Eqn 5 for positive interval variable AccX, given positive interval variables for the
other variables on its LHS and RHS (Alefeld and Herzberger, 1983; Ferson and
Long, 1994; Burmaster and Thompson, 1994). Regardless of the method used to
calculate a proposed solution for AccX, in Eqn S, a proposed solution — say, 2
proposed range for a soil cleanup target — is considered mathematically correct if
and only if the proposed solution satisfies Eqn 5 when substituted into it.

THE PROBABILISTIC PARADIGM

In the rest of this manuscript, we discuss a fully probabilistic paradigm. While a
number of authors and the US EPA itself have begun to support a probabilistic
interpretation for some of the variables in Eqn 1, we know of no thorough
discussion of the consequences of adopting a fully probabilistic interpretation of
Eqn 1 when moving from risk assessment to backcalculating cleanup targets as a
part of risk management.

Why is it appropriate to replace the deterministic framework with a probabilistic
one? We give two of the many answers (for others, see: Morgan and Henrion, 1990).
First, in theory, dictionaries base the definition of risk on the concept of chance or
probability. For example, the Webster's New World Dictionary defines “risk” as “the
chance (meaning, probability) of injury, damage, or loss....” (Webster’s, 1970). The
probabilistic framework returns risk assessment to its most basic definition. Second,
as a practical matter, risk assessors agree that all the variables on the RHS of Eqn 1
contain both (i) variability (here, defined as knowledge of heterogeneity in a well-
characterized population, usually not reducible through further measurement or
study) and/or (ii) uncertainty (here, defined as ignorance about a poorly-
characterized phenomenon or model, sometimes reducible through further
measurement or study). For example, not every adult drinks the same amount of
water each day (a manifestation of variability). Further, an analyst may not know
how much water each adult drinks each day (a manifestation of uncertainty). Most
mathematicians use random variables to represent and analyze both variability and
uncertainty (Morgan and Henrion, 1990; Cooke, 1991), and techniques are
available for propagating them independently (if appropriate) using simulation
(Frey, 1992; Hoffman and Hammonds, 1993; Carrington, 1993).
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Backward Calculations

When interpreting a probabilistic risk assessment, a risk manager also nceds a
new framework to decide if an acceptable risk or unacceptable risk occurs at a site.
She or he can no longer use a simple “bright line test”, i.e., a single number, against
which to judge the estimated distribution of risk, R. In the probabilistic paradigm,
risk is a random variable represented by a probability distribution, so a risk manager
must make a decision about the acceptability or unacceptability of risk by making
decisions about the acceptability or unacceptability of the distribution of risk, not
about a single point value of risk. In this manuscript, we investigate AccR* as a
single specified distribution.

When working in the probabilistic framework, the risk assessor must solve Eqn
7 for the acceptable value of the exposure point concentration (AccX,) that is
consistent with the distribution for acceptable risk (AccR*®) specified by the risk
manager.

AccX, T, X,
_C__._lJ n..z= Eqn8
nj-lxj

>

a

&
]

Risk assessors experienced in using Eqns 1, 2, and 3 in the deterministic
paradigm often think that they can use ordinary algebra to re-arrange Eqn 8 into

Eqn 9:

AccX, = AccR"-TLY, Eqn 9
1
X

in2 &t

Unfortunately, in the probabilistic paradigm, Eqn 9 does not follow from Eqn 8
because AccR* is not independent, a mistake that we ourselves have made (Lloyd et
al,, 1992).

To show that Eqn 9 does not follow from Eqn 8, let us exploit a property of
lognormal distributions. We use the notation:

V -~ exp[N(py,0v)]

to represent a random variable, V, whose natural logarithm is distributed as 2 normal
or Gaussian random variable with mean py and standard deviation 6v (Gilbert, 1987).

b
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Case B: Eqn 8’ has a degenerate solution for AccX, in the form of a real constant

Continuing the numerical example above, let us consider that the risk manager
specifies the distribution for acceptable risk as AccR* ~ exp[N(-1, 5)}. In this casc, we
find AccX, ~ exp[N(0, 0)], a real value, a result confirmed by direct substitution in
Eqn 8".In Case B, AccX,, degenerates to a constant = ¢® = 1 However, Eqn 9’ suggests

that AccX,; ~ exp[N(0, /50 )], a false result that fails direct substitution in Eqn 8.

Case C: Eqn 8’ has no feasible solution for AccX ;.

Continuing the numerical example above, let us consider that the risk manager
specifies the distribution for acceptable risk as AccR* ~ exp[N(-1, 4)]. In Case C,
we find that AccX| has no feasible solution in Eqn 8'. However, Eqn 9" suggests

that AccX; ~ exp[N(0, J41)], a false result that fails direct substitution in Eqn 8.

As the variance of AccR * decreases, the solution to Eqn 8" degenerates from a
distribution in Case A, to a real value in Case B, and then to no solution in Case C.
In all three cases, Eqn 9’ gives incorrect and misleading results. This conclusion, well
known in mathematics, shows that ordinary algebra cannot be used to invert Eqn 8
to Eqn 9 for random variables. Under suitable conditions, there are more
sophisticated methods, including a technique called multiplicative deconvolution,
which an analyst can use to solve Eqn 8 for random variable AccX, given random

variables for the other variables on its LHS and RHS (Ferson and Long, 1994).
Regardless of the method used to calculate a proposed solution for AccX,, in Eqn 8,
a proposed solution — say, a proposed distribution for a soil cleanup target — is
considered mathematically correct if and only if the proposed solution satisfies Eqn
8 when substituted into it.

DISCUSSION

First, ordinary algebra can be used to re-arrange Eqn 1, the fundamental risk
equation for exposure to a single carcinogen in the fully deterministic paradigm, to
estimate point values for soil cleanup targets. However, in the interval and the fully
probabilistic paradigms, ordinary (real number) algebra cannot be used to re-arrange
the fundamental risk equations (Eqns 4 and 7). Under suitable conditions, there are
more sophisticated methods which an analyst can use to solve Eqns 5 or 8 for
interval variable AccX | or random variable AccX, given appropriate information
for the other variables on the LHS and the RHS of the particular equation (Ferson
and Long, 1994).

Second, a risk assessor and a risk manager must pick a paradigm for a project and
then follow the internal logic of that framework throughout both the assessment
and the management phases of the project. Each of the three paradigms is internally
consistent. Risk assessors or risk managers who begin in one framework and then
switch to a different one will inevitably make erroneous calculations and draw
erroneous conclusions.
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Sixth, we emphasize that not all nsk management activities require directly
asking the question “How clean 1s clean enough?”. For example, some risk
management decisions are structured as choices among a small number of mutually
independent alternatives, each of which has an associated technology, cost, and
efficacy. We suggest that the techniques of probabilistic risk analysissand decision
analysis are very useful in this type of risk management decision, although they are
not addressed in this manuscript.

Finally, one of the most pressing issues raised by this manuscript is the need for
risk managers to think about how to make judgments on the acceptability or the
unacceptability of distributions of risk. As a society, we need ways to pick
distributions of acceptable risk — as full distributions — or to identify acceptable
distributions of risk — say, as constraints on probability distributions.
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ABSTRACT

When evaluating a fully probabilistic risk assessment, say at a hazardous waste
site, the risk manager needs a risk management policy that distinguishes an
acceptable distribution of risk from an unacceptable one. This manuscript explores
several alternative ways to define the acceptability of a distribution of risk. This
manuscript also presents methods to backcalculate distributions for cleanup targets
under the alternative risk management policies if the need arises.

INTRODUCTION

When estimating the incremental lifetime cancer risk, R, from an environmental
exposure to a single carcinogenic chemical via a single exposure pathway, risk
assessors (hereafter, RAs) often use equations of this fundamental form:

nf-l XI
nﬁ-l Y)

Eqn1

where [] indicates a product over the index. In this discussion, we assume that X is
the exposure point concentration (EPC), X; is the Cancer Slope Factor (CSF), and
all the remaining variables on the right hand side (RHS) of the equation are other
exposure variables. Adapting ideas published by the National Academy of Sciences
in 1983 (NAS, 1983), the US EPA has published many such equations for use in
public health risk assessments at hazardous waste sites (e.g., US EPA, 1989). In all
but rare instances, the US EPA has developed its formulae in the deterministic
paradigm in which all variables on the RHS of Eqn 1 are positive real numbers, i.e.,
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RISK AS A RANDOM VARIABLE

In the probabilistic paradigm, R i Eqn 2 1s a positive random variable
represented by a probability distribution because each of the X, and Y, is a positive
random variable represented by a probability distribution. With knowledge of the
distributions of all the X, and Y, an analyst can calculate a closed form expression
for the distribution R in a handful of special cases with independent variables
(Springer, 1979). In most practical cases, including those cases with correlated or
jointly distributed random variables, the analyst can simulate a numerical
approximation to the distribution R (Rubenstein, 1981; Morgan, 1984). In
simulations, the analyst may use (simple) Monte Carlo sampling or (weighted)
Latin Hypercube sampling in a simulation program that may run on a typical
personal computer or engineering workstation. Many such computer programs are
available today, including RiskQ_(Bogen, 1993; Wolfram, 1991), Crystal Ball
(Decisioneering, 1994), and @Risk (Palisades, 1993).

THE ACCEPTABILITY OF A DISTRIBUTION OF RISK

When interpreting a probabilistic risk assessment, a risk manager (hereafter, RM)
also needs a probabilistic framework in which to decide whether an acceptable risk or
unacceptable risk occurs at a site. She or he can no longer use a simple “bright line
test,” i.e., 2 single point value (Rosenthal et al., 1992), against which to judge the
estimated distribution of risk without picking 2 moment or a percentile of the
distribution. In the probabilistic paradigm, the incremental lifetime cancer risk is a
positive random variable represented by a probability distribution. Hence, a RM must
make a decision about the acceprability or unacceprability of the risk by making
decisions about the acceptability or unacceptability of the distribution of the risk.

In this manuscript, we investigate several possible tests that a risk manager could
use to judge the acceptability or unacceptability of the distribution of the risk. We
will discuss several approaches (of the innumerable universe of approaches) that a
RM could use to judge the acceptability or unacceptability of distribution R
estimated using Eqn 2. For example, a risk manager could use one of these
approaches when interpreting a risk assessment at a hazardous waste site to
determine if the current conditions (either before or after some remediation) are
acceptable or not. If, for current conditions, the distribution R estimated using Eqn
2 is judged acceptable according to the governing policy, then the RM may conclude
that the site needs no (further) remediation or management. On the other hand, if,
for the same conditions, the estimated distribution R is judged unacceptable, then
the RM may conclude that the site needs (further) remediation or management. Of
course, the RIM may also consider other issues (e.g., cost, engineering feasibility, and
public acceptance) in the decision.

In this manuscript, we denote the set of all distributions of risk that meet the
governing policy for the acceptability of a distribution of risk with the symbol AccR.
In the first approach discussed next, the set AccR includes only one distribution
which is acceptable under the governing risk management policy, but in each of the
remaining approaches, the set AccR includes an infinite number of distributions
which are acceptable. -
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Specifying the Set of Acceptable Distributions using One Inequality Constraint on
One Percentile of R

In a fifth and simplest policy approach, the RM could define a dstribution of
risk R calculated with Eqn 2 as acceptable as long as one key percentile of the
distribution meets one inequality constraint, e.g., Cons 5. Some government
agencies have already begun to express their exposure and/or risk management
policies for hazardous waste sites along these lines. For example, in Massachusetts,
before or after cleanup, a hazardous waste site poses an acceptable risk if the 95*
percentile of estimated incremental lifetime cancer risk falls at or below 1 in 100,000
(MA DEP, 1993). In this fifth and simplest policy approach, there are fewer choices
for the regulatory agency: (i) the percentile at which the constraint applies, and (ii)
the value of the constraint (y,).

THE ACCEPTABILITY OF A DISTRIBUTION FOR THE EXPOSURE
POINT CONCENTRATION

Next, we present ways to backcalculate distributions for the cleanup target under
the alternative policy options discussed above.

With the key concept of an acceptable distribution of risk defined as one of the
five alternative risk management policies discussed above, one can understand the
concept of an acceptable distribution of exposure point concentration as any
probability distribution X, (or in the degenerate limit of zero variance, any point
value X) which — when substituted into Eqn 2 along with the distributions for the
other input variables — yields a distribution R that meets all criteria for the
acceptability of risk specified by the regulatory agency.

If the governing policy for the acceptability of a distribution R admits an infinite
number of distributions into the set AccR , then, in general, that governing policy
in turn will admit an infinite number of distributions of exposure point
concentration X, into the set of all such acceptable distributions (the set AccX.,).

When conducting a baseline risk assessment (say, before remediation at a
hazardous waste site), the RM can decide whether the distribution of exposure point
concentration X, at a site is acceptable or not by considering the distribution R
using Eqn 2. If the distribution R is acceptable (or not) according the prevailing
regulatory policy, then the distribution X, is acceptable (or not). If the distribution
R is not acceptable to the RM according to the governing policy, then some
intervention is necessary (i) to make the distribution X, “smaller” or narrower, or
(i1) to reduce the intensity, frequency, or duration of exposure at the site.

In the fully probabilistic paradigm, the question “How clean is clean enough?”
occurs as it does in the fully deterministic paradigm. However, it is usually more
difficult to calculate a full distribution for a cleanup target in the fully probabilistic
paradigm than it is to calculate a point value for a cleanup target for the exposure
point concentration in the deterministic paradigm.

Even though there may be many ways to backcalculate one or more members of
the set AccX ;, and even though it may be more difficult to compute one or more
members of the set AccXy, it is straightforward to test a distribution (or a point
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3

General Solution When AccR* is Specified

In the first policy approach, if the RM specifies one distribution AccR * as the
uniquely acceptable distribution of risk, then Eqn 2 has zero or one solution for an
acceptable distribution of EPC (Ferson and Long, 1994). If the variance of the
specified AccR " is too small (compared to the variances of the other viriables), then
Eqn 2 has no solution. If the variance of the specified AccR * is large enough, and if
other mathematical conditions hold, then Eqn 2 has one solution which may be
calculated using mulriplicative deconvolution (Ferson and Long, 1994). The single
solution may be a single distribution for the exposure point concentration, or, in the
limit of decreasing variance, a single real number.

As noted earlier, this approach with one specified AccR * has little or no practical
appeal, say, as a way to plan remediation at a hazardous waste site. In addition to the
limitation mentioned earlier, this approach has the further limitation that the
algorithms for multiplicative deconvolution necessary to compute it are numerically
intensive and are sensitive to numerical instabilities (Ferson and Long, 1994).

General Solution When Either AccR# or AccR+ is Specified

In the second policy approach, if the RM specifies the policy for the acceptability
of risk in terms of a fully or partially dominant distribution (AccR* or AccR*,
respectively), Eqn 2 has an infinite number of nondegenerate solutions. In this
second policy approach, the RA may use a combination of multiplicative
deconvolution, dispersive Monte Carlo simulation, and dependency bounds analysis
(Ferson and Long, 1994; Ferson, 1994) — along with the methods in Appendix 1
— to find a first solution to the stated problem. Once a first solution is found, the
analyst can use numerical experiments and heuristic search to find other solutions
closer to the extremal solution. In this second policy approach, the extremal solution

is the (unique) feasible solution for X, that yields the R closest to AccR* or AccR*

in a defined metric. If either AccR* or AccR* is specified, any distribution that is
dominated by a known solution to Eqn 2 is also a solution.

General Solution When Inequality Constraints Are Specified For Moments

In the third policy approach, if the RM specifies the policy for the acceptability
of risk in terms of one or more constraints on one or more moments in the form of
Cons 1, 2, 3, and/or 4, Eqn 2 always has an infinite number of nondegenerate
solutions (unless the constraints somehow contradict each other and admit no
feasible solution). In this third policy approach, the RA may use a combination of
multiplicative deconvolution, dispersive Monte Carlo simulation, and dependency
bounds analysis (Ferson and Long, 1994, Ferson, 1994) — along with the methods
in Appendix 1 — to find a first solution to the stated problem. Again, once a first
solution is found, the analyst can use numerical experiments and heuristic search to
find solutions closer to the extremal solution. In this third policy approach, an
extremal solution is any (non unique) nondegenerate distribution that just touches
the specified constraints. With the acceptability of risk defined in terms of
constraints in the form of Cons 1, 2, 3, and/or 4, any distribution that is dominated
by a known solution to Eqn 2 is also a solution.
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Eqn 4

Discussion

When inserted into Eqn 2, the scaled distribution s < X, leads to the scaled
distribution s * R which, by construction, just touches the constraint(s) that caused
the Minimum [ s, ]. If R is a lognormal distribution, then s * R is also a lognormal
distribution. Similarly, if X, is a lognormal distribution, then s * X, is also a
lognormal distribution. Finally, any distribution dominated by the distribution s * X,
is also a solution to the problem.

General Solution When One Inequality Constraint Is Specified for One Percentile

In the fifth and simplest policy approach, if the RM specifies the policy for the
acceptability of risk in terms of one constraint on one specified percentile of the risk
distribution in the form of Cons 5, Eqn 2 always has an infinite number of
nondegenerate solutions. Again, with the acceptability of risk defined in terms of
constraints on one percentile of risk in the form of Cons 5, any distribution that is
dominated by a known solution to Eqn 2 is also a solution.

In this policy approach with only one inequality constraint, the scaling method
does find one of the infinite number of nondegenerate distributions which are
extremal solutions. In this fifth policy approach, an extremal solution is any (non
unique) distribution that just meets the single specified constraint at the edge of the
feasible envelope. Again, with the acceptability of risk defined in terms of one
constraint on one percentile of risk in the form of Cons 5, any distribution that is
dominated by a known solution to Eqn 2 is also 2 solution.

In this fifth policy approach, ChemRisk (1994), Sielken (1994), and McKone
(1994) have also found a point value for X, that is an extremal solution. As an
example of this degenerate case, say the single constraint occurs at the 95% percentile
of R as in Cons 5 earlier: 0 < Rogs< v1.

If the single inequality occurs at the n™ percentile (n > 50), the analyst computes
a point value for X, by taking the (100 - n)* percentile on the RHS of Eqn 5. In this
example with the constraint at the 95% percentile of risk, the analyst computes X, as:

« TV
X, = [ RN CF ] Eqn’S
122 )—<l 005

This method also has modest computational burden, and it produces an extremal
point value as the cleanup target. In other words, when the point value X, is
substituted into Eqn 2, the 95* percentile (in this example) of the distribution R
equals v,. The algebraic proof of this derivation in the special case when all the
distributions are lognormal ones shows that the distribution R that results from this
procedure has moments and percentiles which come from the distributions for the
X, (i=2,..,)and the Y; (j = 1, ... ]), not from regulatory policy. In parallel with
earlier results, any point value (or full distribution) which is stochastically dominated

by a known solution is also a solution.
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acceptable distribution of risk in terms of inequality constraints on specified
percentiles — has only a modest computational burden. Although the scaling
algonithm 1s not an extremal algorithm when two or more 1nequality constraints are
specified as in the fourth policy approach, we find it practical for use in estimating
distributions for cleanup targets at many hazardous waste sites, especially ones
without prominent “hotspots”.

Fifth, although we are not ourselves RMs, we believe that the fourth policy
approach — with two or three constraints — is the most attractive of these because it
gives the RM great flexibility in specifying a risk management policy in terms of the
median risk and the “high end” risk [EndNote 6]. The fourth policy approach also
gives the RA certain mathematical methods with modest computational complexity,
and the fourth policy approach gives the potentially responsible parties (PRPs) good
laditude to fashion a cost-effective remedy consistent with the stated risk management
policy. Overall, we believe that the fourth policy approach (not the fifth one) is the
most practical and reasonable to pursue in the real world. [EndNote 7]

Sixth, a proposed solution for a nondegenerate distribution (or a proposed point
value) of the exposure point concentration — no matter how calculated — must be
verified or falsified by direct substitution into Eqn 2. Thus, the RM need not
understand the method by which someone proposed a full distribution (or point
value) for a cleanup target. However, the RM should verify that the proposed
distribution X, (or the proposed point value X)) is indeed a solution by using the
direct test given above.

Seventh, in the fully probabilistic paradigm in which the policy for the
acceptability of a distribution of risk is expressed in terms of inequality constraints
on moments and/or percentiles, we understand that an engineer working on the
remediation at a hazardous waste site must translate the distribution selected by the
RM as the cleanup target into explicit instructions for the field crew. [EndNote 4]
In this manuscript, we do not consider “where to drive the bulldozer” or any
compliance issues. We note that there is no 1:1 relationship between a probability
distribution for the exposure point concentration and the spatia/ distribution of
exposure. {EndNote 5]

Eighth, as a practical matter, RAs and RMs may find themselves working in a
hybrid paradigm in which some variables are treated as real numbers (constants) and
other variables as random variables. Such a situation may arise for technical or policy
reasons. As an example of the former, the RA may decide that it is unnecessary or
inappropriate to treat one or several variables as random variables after completing
sensitivity analyses of the exposure model. As an example of the latter, the US EPA
currently rejects the idea that Cancer Slope Factors are properly modeled as random
variables, even though toxicologists inside and outside the Agency recognize that
CSFs have both variability and uncertainty inherent in them. In such situations, the
RA would use (i) a point value — perhaps an arithmetic mean or a value at a higher
percentile — for each of these variables held constant and (ii) a random variable for
each of the others. In this hybrid paradigm, an equation similar to Eqn 2 would hold
as the fundamental risk equation. Although we do not elucidate the rules for the
internal consistency of such hybrid paradigms here, the RA and the RM must do so
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5. Many different spatia/ distributions (e.g., for contaminants mn soils) may give
rise to identical (or indistinguishable) probability distributions for the
exposure point concentration 1n a particular risk assessment.

6. By constraining both the median risk and the “high end” risk, the sk
management policy indirectly constrains the expected value of risk as well. [f
the risk management policy only constrains one percentile of nisk, even a
“high end” percentile of risk, the policy does not limit the expected value of
risk, even indirectly.

7. As Albert Einstein wrote, “Make things as simple as possible, but no more so.”
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APPENDIX 1

Feasible Regions in the p - 6 Plane

In the fully probabilistic paradigm, the distribution for R from Eqn 2 tends to a
lognormal distribution as the number of input variables increases (regardless of the
distributions of the input variables). In this appendix, we investigate how a risk
management policy defined in terms of inequality constraints on various percentiles
or moments of a lognormal distribution in turn places constraints on the two
parameters of that lognormal distribution describing risk.

In this appendix, we use this notation for a lognormal distribution of risk:

R ~ exp[ N( g, 0r) ] where exp denotes the exponential function and N(, *)
denotes a normal or Gaussian distribution with mean pg and standard deviation
or. For further information on this distribution, see Evans et al. (1993).

In the p - © plane, we will investigate the constraints on p and o that arise
from mathematical principles and from different types of inequality constraints
that risk managers may use to define acceptable risk. Each type of inequality
constraint divides the p - ¢ plane into a feasible region and an infeasible region.
The boundary between the two regions is the line of equality for the constraint. If
multiple inequality constraints hold simultaneously (i.e., multiple inequality
constraints are combined with the Boolean operator AND), the feasible region in
the p - ¢ plane of the combination of constraints is the intersection of the feasible
regions of the individual constraints.

First, we note one fundamental inequality constraint: G cannot be negative.

c 20

In all figures in this appendix, the feasible region for this constraint lies above
the p-axis. When ¢ = 0, the random variable degenerates to a constant.

In Figure A-1, using Mathematica™ (Wolfram, 1991), we plot five illustrative
inequality constraints on various percentiles of the distribution of risk. Here, we
plot the straight lines for the five illustrative constraints for percentilés = 0.023,
0.159, 0.500, 0.841, and 0.977; these percentiles correspond to z = -2, -1, 0, +1,
and +2, respectively.
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We propose 14 principles of good practice to assist people in performing and reviewing probabilistic
or Monte Carlo risk assessments, especially in the context of the federal and state statutes concerning
chemicals in the environment. Monte Carlo risk assessments for hazardous waste sites that follow
these principles will be easier to understand, will explicitly distinguish assumptions from data, and
will consider and quantify effects that could otherwise lead to misinterpretation of the results. The
proposed principles are neither mutually exclusive nor collectively exhaustive. We think and hope
that these principles will evolve as new ideas arise and come into practice.
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1. INTRODUCTION

For over 50 years, Monte Carlo (MC) techniques
have been used in physics, chemistry, and many other
disciplines to compute difficult multi-dimensional inte-
grals. One example of this use is to combine probability
distributions for several input variables to estimate prob-
ability distributions for one or more output distribu-
tions.(#!4 The widespread use of Monte Carlo
techniques in public health and environmental risk as-
sessment promises significant improvements in the sci-
entific rigor of these assessments. Because Monte Carlo
methods are more computationally intensive than the
‘‘deterministic’’ or ‘‘point estimate’’ methods in com-
mon use today, some people have suggested that Monte
Carlo analysis not be widely adopted at this time. We
believe that this is an overreaction, but we recognize the
need for safeguards and precautions to reduce mistakes
and prevent abuses.

! Alceon Corporation, P.O. Box 2669, Cambridge, Massachusetts
02238-2669.

? Ogden Environmental and Energy Services, 239 Littleton Road, Suite
7C, Westford, Massachusetts 01886.

477

We propose 14 principles of good practice in this
article to assist people in performing and reviewing
probabilistic risk assessments, especially in the context
of the federal and state statutes concerning chemicals in
the environment. Monte Carlo risk assessments for haz-
ardous waste sites that follow these principles will be
easier to understand, will explicitly distinguish assump-
tions from data, and will consider effects that could oth-
erwise lead to misinterpretation of the results. These
proposed principles arise from years of experience con-
ducting and reviewing MC risk assessments and from
conversations with many knowledgeable people in man-
ufacturing companies, consulting companies, law firms,
universities, nonprofit organizations, and government
agencies. We think and hope that these principles will
evolve as new ideas arise and come into practice.

Before proposing the 14 principles, we agree that
each risk assessment, whether deterministic or probabil-
istic in design, must have a clearly defined assessment
end point® and must contain all the information such
that a knowledgeable person can reproduce and then
evaluate the analysis from the material presented in the
final report.t»

0272-4332/94/0800-0477507 00/1 © 1994 Soctety for Risk Analysis
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Fig. 1. Comparison of frequency distributions on linear and
logarithmic scales.

ply missing information or to supplement partial in-
formation. If empirical measurements are not available
for any reason, use and document accepted techniques—
such as the Delphi method®!*—to estimate the input
distributions for nonmeasured variables.

2.8. Principle 8

Discuss the methods and report the goodness-of-fit
statistics for any parametric distributions for input vari-
ables that were fit quantitatively to measured data. Show
plots of the parametric fits and the data on the same axes.
Discuss the implications of any important differences. If
any distribution was generated qualitatively or by expert
judgment, discuss the techniques used.'®

2.9. Principle 9

Discuss the presence or absence of moderate to
strong correlations between or among the input varia-
bles. By strong correlation, we mean |p| 2 0.6 or so. In
many, but not all, practical situations, the absolute values
of the correlations are less than 0.6. If so, the presence
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of moderate to strong correlations will have little effect
on the central portions of output distributions®® but may
have larger effects on the tails of the output distributions.
If it is possible that one or more moderate to strong
correlations exist but no data are available from which
to estimate them, perform Monte Carlo simulations with
the correlations (i) set to zero and (ii) set to values con-
sidered high but plausible to learn if the possible cor-
relations are important in the analysis. Display and
discuss the results of these correlation sensitivity anal-
yses and computational experiments, and state the prac-
tical effect, if any, of including or ignoring the
correlations among the input variables.

2.10. Principle 10

Provide detailed information and graphs for each
output distribution in the text and/or in an appendix. At
a minimum, we suggest the following for each output
variable: (i) a graph of the variable (in either log scale,
linear scale, or both, depending upon the shape of the
distribution) that clearly shows (a) the 10~ risk and the
10-¢ risk, or other allowable risk criteria, and (b) the
point estimate of risk calculated by the deterministic
method, and (ii) a table of the mean, the standard de-
viation, the minimum (if one exists), the 5th percentile,
the median, the 95th percentile, and the maximum (if
one exists). In Fig. 1, the histogram of estimated risk in
the lower panel (on the log scale) gives a greater un-
derstanding of the variability in the output than does the
histogram of the same results in the upper pane! (on the
linear scale). In Fig. 2, the histogram and the cumulative
histogram in the upper and lower panels, respectively,
display the variability of the output differently, but it is
often useful to include both plots because each high-
lights a different aspect of the results. The graphs shown
in Figs. 1 and 2 display the variabilities in the calcula-
tions, not the uncertainties.

2.11. Principle 11

Perform probabilistic sensitivity analyses for all of
the key inputs represented by a distribution in the Monte
Carlo analysis in such a way as to distinguish the effects
of variability from the effects of uncertainty in the in-
puts. Display the results of these computational experi-
ments in an appropriate graph.® The forms of the graphs
will vary depending upon the method used to perform
the probabilistic sensitivity analyses, but they should
make clear which input variables contribute most
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current conditions, a study to estimate risks for the rea-
sonably foreseeable future conditions, and a study to es-
timate cleanup targets.

We have proposed these 14 principles of good prac-
tice as aids to performing or reviewing human health
and ecological risk assessments done using MC tech-
niques. While we favor the widespread use of MC tech-
niques, we recognize the need for safeguards and
precautions to reduce mistakes and prevent abuses. As
proponents of the new methods, we hope that these pro-
posed principles are general enough to show the standard
of practice needed for conducting a MC assessment. We
further hope that these ideas promote careful studies and
innovation, which, in turn, create new insights and prin-
ciples of good practice.

Several limitations apply to the ideas in this paper.
First, the principles proposed are not mutually exclusive;
some overlap with each other. Second, the principles
proposed are not collectively exhaustive; for example,
we have not proposed a principle concerning model un-
certainty™ nor one concemning the truncation of un-
bounded parametric input distributions (although the
effects of truncation on percentiles and moments may be
investigated through computational experiments and
sensitivity analyses). Third, not all of these principles
need apply to every study because not all of the prin-
ciples are equally important in every situation. Fourth,
the principles proposed are not inflexible recipes such as
guidance manuals often present; we have instead tried
to suggest the spirit of good practice without dictating a
fixed and inviolate set of methods. Fifth, some of the
principles are simply beyond the state of the art in some
situations; for example, it is not now possible to fulfill
all the proposed principles for a three-dimensional finite
element model of time-varying ground water transport.
Sixth, some of the principles are excessively burden-
some for simple assessments. Notwithstanding all these
limitations, we hope that the proposed principles will
contribute to the quality of the MC studies undertaken.
We further hope that these proposed principles will en-
courage others to refine these ideas to develop and pub-
lish new ones.
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USING MONTE CARLO SIMULATIONS IN PUBLIC HEALTH
RISK ASSESSMENTS: ESTIMATING AND PRESENTING FULL
DISTRIBUTIONS OF RISK

DAVID E. BURMASTER, PH.D.

KATHERINE VON STACKELBERG
Alceon Corporation
Cambridge, Massachusetts

With desktop computers as powerful as mainframes were just a few years ago,
analysts can now use commercial software to estimate full probability
distrnibutions for—not just point estimates of—health risks experienced by
people chronically exposed (o toxic chemicals at or near hazardous waste sites
Even though probability 1s the central concept in risk assessment, and even
though probabilistic methods offer strong advantages and insighis as compared 1o
the “deterministic” methods now required by U.S. Environmental Protection
Agency's gudance manuals, analysts have only begun to use probabilistic
methods at Superfund sites

In this paper, we exanune a simplified case study using Monte Carlo methods 1o
estimate full distributions of public health risk We demonsirate the use of
“toggles” to isolate the contributions of different inputs, and we also offer new
graphical methods to communicate the results to risk managers and concerncd
citizens.

INTRODUCTION

Risk assessments that follow guidance published by the U.S. Environmental Protection
Agency (EPA) combine a series of average, conservative, upperbound, and worst-case
assumptions to derive a point estimate of nsk that is conservativc, i.e.. protective of public
health (EPA. 1989a;: EPA. 1989b). Although EPA calls for analyses which address
Reasonable Maximum Exposure (RME) to receptors, the concept of Reasonable Maxunum
Exposure is never fully defined (EPA. 1989a;b).

Conservative point estimates of risk calculated with EPA’s current methods have three major
limitations. First, by selecting a combination of average, conservative. and worst-casc

1. Direct all correspondence to David E. Burmaster, Ph.D., Alceon Corporation. P.0O). Boa
2669, Harvard Square Station, Cambridge, MA 02238-2669. Tel. (617) 864-4300
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assumptions, risk assessors and risk managers have no way of knowing the degree of
conservatism in an assessment. Second, by setting the bias high enough to swamp the
uncertainty for each of many variables, the risk assessment considers scenarios that will rarely
if ever happen. Third, it is meaningless to run traditional sensitivity analyses (e.g., to make
calculations at £10 or £25 percent from each input value) to determine the uncentainties in the
final point estimates because many of the input variables are at or near their maxima. Thus,
the current procedures offer comfort if the estimated risks falls below a de minimis value, but
they offer no insight if the estimated risk exceeds a de minimis value.

Because conservative assumptions usually combine in multiplicative ways, results based on
EPA'’s current methods rarely if ever capture the true risk of a situation or a behavior. The
calculated point estimate usually falls far above the 95 percentile of the true nisk range
(Environ, 1991). Monte Carlo simulations can estimate the full risk distributions. thereby
putting the point estimates into a full and proper context.

Monte Carlo simulation, developed by physicists over 50 years ago and long used by
engineers in many fields, addresses the weaknesses of the current nsk assessment methods
identified above (Burmaster et al., 1990). In extending the regular methods used in public
health and ecological nsk assessments, probabilistic techniques add several steps to estimate
both point values and full distributions for the exposures and risks (Smith, 1991). First, the
analyst determines a continuous or discrete probability density function (PDF) to describe each
of the variables to be included in the analysis. In this step, the analyst must also determine if
any correlations exist among the input variables and take appropriate action if necessary.
Second, the analyst uses suitable software to make many realizations of the model. For each
realization, the computer draws one random value from the appropriate distribution for each of
the random variables in the model. and computes and stores a single result. This computation
1s repeated many times. Third, the analyst views the results and establishes the shapes of the
distributions for intermediate and final results, and various statistical summaries of the
results. In this framework, a complete risk distribution is derived by combining the
distributions for the antecedent variables. These probabilistic techniques make the analyses
more informative for risk managers and members of the public (Finkel. 1990). These new
methods are illustrated in the first two fully probabilistic risk assessments prepared for
hazardous waste sites regulated under the federal Superfund program (Ebasco, 1990: Environ,
1991).

In Monte Carlo simulation, each of many input variables can become a random vanable with
known or estimated PDF. (Equivalently, an input variable can be specified by a cumulative
distribution function (CDF)). Within this framework, a variable takes on a range of values
with a known probability.

The histograms for the estimated risks from exposure (o a single compound are often highly
non-Gaussian in shape for two reasons. First. some or all of the input variables may not have
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normal or even symmetric distributions. Second, the input variables usually enter the
formulae by multiplication and division (and subsequent summation), so that even if all
inputs have Gaussian distributions, the results will not. For risk from exposure to a single
compound, the central limit theorem of statistics implies that the product of many
‘distributions tends to a lognormal distribution, regardless of the distributions of the individual
factors (see a statistical text, e.g., Benjamin and Comell, 1970).

A SIMPLIFIED CASE STUDY

To illustrate the application of Monte Carlo simulation to health risk assessment, we consider
a simplified case study of a hypothetical site. We estimate the PDFs and summary statistics
for the Incremental Lifetime Cancer Risk (ILCR) for one scenario involving dermal exposures
to benzo(a)pyrene (BaP) found in soils. We chose point values and distributions for the inputs
that are reasonable in view of the current knowledge and current EPA guidance documents.

As a case study, we consider a hypothetical site — an old industrial site with BaP in the
surface soils — that a City Council may buy and convert to a park. Since we want to
illustrate the use of Monte Carlo simulation to estimate a full distribution for health risk, we
consider only one of the many scenarios and only one of many possible exposure pathways
which could be considered for this site and its proposed use. This scenario considers children
who are exposed to surface soils while playing in the new park. We make conservative and
simplifying assumptions concerning the children’s dermal contact with the soil. Given the
uncertainties inherent in an exposure assessment, this scenario is constructed in accordance
with current EPA guidelines and uses conservative (or health-protective) assumptions, in the
spirit of analyzing the RME case, rather than worst-case assumptions.

THE EXPOSURE MODEL

To esumate health risks, we first estimate the average daily dose of BaP that a person receives
in units of milligram of bioavailable chemical per kilogram of body weight per day
(mg/(kg-d)), averaged over a 70-year life (abbreviated as the ADD(life)). Following the standard
method (EPA, 1989b), we then estimate the Incremental Lifetime Cancer Risk by multiplying
the ADD(life) by the Cancer Potency Factor (CPF). Exhibit 1 gives the equations used to
estimate ADD(life) and ILCR for this case study.

McKone recently published a model to estimate the uptake of organic chemicals from a soil
matrix deposited onto the skin surface (McKone, 1990). In the model, the stratum corneum is
the barrier to uptake, and the amount of chemical which passes through the stratum corneum
represents the bioavailable dose. The model depends on scenario-specific inputs, soil
properties, skin properties, and chemical properties of the soil contaminants. We use the one-
time or unit-deposition model in this simplified analysis. McKone derives a Personal
-Exposure Factor (PEF) which, when multiplied by the concentration of the chemical 1n the
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soil, estimates the average daily dose on a day of exposure. We 1dentified the most sensitive
variables in McKone’s model by standard sensitivity analyses.

-

THE SPREADSHEET MODEL

Exhibit 2 shows the spreadsheet for estimating doses and risks for this case study. Left of the
vertical bar, the spreadsheet lists all the variables considered in this analysis, along with point
estimates for the variables and parameters for the probability distributions. For clarity and
subsequent analysis, we group the input variables as shown: exposure scenarios, soil proper-
ties, skin properties, chemical properties, soil concentrations, relative bioavailability. and can-
cer potency factor. For each of the 12 variables with probability inputs, the spreadsheet has a
0,1 toggle to select between the point value (activated by 0) and the PDF (activated by 1).

Right of the vertical bar, the spreadsheet calculates intermediate results and reports the
estimated ILCR ( and logjg ILCR) in the lower right corner. As shown here, all toggles are
set to 0 and thus the spreadsheet has calculated the point estimate for ILCR. The spreadsheet
estimates the Incremental Lifetime Cancer Risk from chronic low-dose exposure to BaP via
dermal contact with soils, in keeping with the methods recommended by EPA (EPA,
1989a;b). In the absence of specific information on possible synergisms or antagonisms
among carcinogenic compounds, the total ILCR is estimated by summing the values for each
compound over all pathways (although only one pathway is specified for this analysis).

INPUT VALUES AND DISTRIBUTIONS

With the exposure model complete, we identify point estimates for all of the model inputs,
find in the literature or formulate distributions for the inputs we want to vary, and put all of
the information into an appropriate simulation program. For use in the exposure model, we
formulate distributions for the concentration of BaP in the site soils and the CPF. Based on
the results of the sensitivity analysis, we formulate distributions for key variables in the
McKone model: body weight, the time soil stays on skin, average body surface area. fraction
of skin area exposed, soil loading, bulk density of soil, and skin water content. We also
formulate distributions for exposure days per week, exposure weeks per year, exposure years
per life, BaP soil concentration, and the CPF for BaP. Thus, five of the seven groups of
variables—exposure scenario, soil properties, skin properties, soil concentrations. and cancer
potency factor—include one or more variables which a toggle can switch between a point
estimate and a distnbution.

In this case study, we use three common distributions to describe the key model inputs: the
normal or Gaussian distribution, the lognormal distribution, and the uniform distribution. We
denote random variable X with a normal distribution as X ~ Normal (i, 6), where g and ¢
represent the arithmetic mean and standard deviation, respectively. Similarly, the lognormal
distribution 1s denoted as X ~ Lognormal (m. s) where m and s represent the anthmetic mean
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and standard deviation of the underlying normal distribution, respectively. (The underlying
normal distribution is generated by taking the logarithms of the values in the distribution).
Finally, we use the notation X ~ Uniform (a, b) to show that the random variable X is
distributed uriformly between fixed minimum (a) and maximum (b) values. )

Exhibit 2 shows all the inputs chosen for the point values and the distributions, along with a
reference. All of the point values are reasonable in the sense that EPA has or could readily
endorse the values for a particular site.

Most people intuitively understand that some or all of the variables in the various groups are
truly stochastic in nature. We go further than most analysts though, and we consider that CPF
values are also stochastic. After all, EPA discusses CPF values in probabilistic language as
representing the 95 percentile of slope of the linearized multistage model applied to animal
data and extrapolated to humans. Extending the ideas in earlier publications (Crouch, 1983;
Crouch & Wilson, 1981), Crouch re-evaluated the CPF for BaP (Crouch, 1990). Based on this
information, we model the ingestion CPF for BaP with a lognormal distribution: CPFg,p ~
Lognormal (-0.79, 2.39) in units of (mg/(kg+d))"!). Although EPA has never published an
ingestion CPF for BaP in its Integrated Risk Information System, the value it now uses in
practice, 11.5 (mg/(kg-d))-l) (EPA, 1986), falls at approximately the 915! percentile of
Crouch’s distribution. (We note that the cross-assignment of the CPF from the ingestion
pathway to the dermal contact pathway, though accepted in practice, is incorrect.)

ESTIMATION AND PRESENTATION OF RISKS

We now estimate full distributions of health risks for this case study, using commercial
software (Crystal Ball. V2.0 (Decisioneering, 1991)) in conjunction with the spreadsheet, and
we compare the distributions to the point estimate of risk. We consider different ways to
present the risks in a graphic format to both non-technical and technical audiences, as drawn
from various widely recognized sources (Chambers et al., 1983; Cleveland. 1985; Finkel,
1990; Graham and Henrion, 1984; Ibrekk and Morgan, 1987; Tufte, 1983: 1990: Tukey,
1977; Systat, 1991).

The Deterministic Case

The ILCR shown in Exhibit 2, namely 2.96E-05. 1s the ““conservative point estimate”
calculated by combining the point values of all the inputs. Although this point estimate of
risk is the usual stopping point for risk assessments, we compare it to the full distributions.
We also compare EPA’s target risk range to the full distnbutions, i.e., the range from:
ILCR = 104, the risk at which EPA always requires remediation. to ILCR = 106, the
Agency’s “point of departure” for remedial goals under the Superfund Program (EPA, 1990).
In Exhibits 3-13, the three vertical lines locate the limits of EPA’s target risk range and the
point estimate on the full distributions.
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The Probabilistic Case with All Distributions Activated

Exhibits 3-7 show different ways to present the results of 5,000 realizations of the spreadsheet
model with distributions for all 12 random variables activated. Each method highlights a
different aspect of the results, and each has different strengths and weaknesses, depending on
the technical sophistication of the audience.

Exhibit 3 summarizes the full distribution of risk as a table of statistics, including the mean,
median, mode, standard deviation, and deciles for the ILCR and the logjg ILCR. As a
nongraphical method, this approach has only slightly more appeal than an ordered list of the
5,000 results! Even engineers have difficulty interpreting the results when presented in this
fashion, although it is possible to discern that the conservative point estimate falls above the
95th percentile of the full risk distribution.

Exhibit 4 compares the histograms of the ILCR and logjo ILCR for the case study. The
graphs reveal important features not evident in the previous table. In linear space, the full
distribution has a long right tail, a high variance, and a mode far below the conservative point
estimate. In this upper histogram, only 4,941 of the results from the 5,000 realizations are
visible within the domain in the graph. In logarithmic space, the full distribution has more
symmetry, with the qualitative feel of a normal distribution. In loganthmic space, it is easier
to grasp the relationships among the distribution, the conservative point estimate, and EPA’s
target risk range of 104 to 10°6. In this lower histogram, more realizations (4,990 of 5,000)
are visible in the graph, but some still fall outside the domain graphed. Each histogram in
Exhibit 4 confirms that the conservative point estimate falls well above the 95th percentile of
the full risk distribution.

Exhibit 5 compares the ordinary histogram and the cumulative histogram for the logjg ILCR
for this case study. Although these graphs contain identical information, an informal poll
revealed that non-technical audiences understand the ordinary histogram far more readily than
the cumulative histogram and that technical audiences prefer to have both presented. Again,
the vertical lines locate the conservative point estimate and EPA’s target risk range on the full
distribution, and again, only 4,990 results from the 5,000 realizations are visible.

Exhibits 6 and 7 show a “box-and-whiskers™ diagram and a probability plot of the logio
ILCR, complete with lines to locate the conservative point estimate and EPA’s target risk
range on the full distribution. As presented here, the box-and-whiskers plot marks the
minimum and maximum at the ends of the whiskers, the 10th and 90th percentiles as the
short crossbars, the 251 and the 75th percentile as the ends of the box, and the median as the
crossbar near the center of the box. For a technical audience, the probability plot in Exhibit 6
shows that the 5,000 realizations of logjg ILCR closely follow a lognormal distribution for
2.5 or 3 standard deviations above and below the median.
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The Probabilistic Case Showing the Contributions from Different Inputs

Uncertainties propagate and combine through a series of calculations. While it is highly
unlikely that the variabilities will combine in a purely additive or multiplicative way to
produce the theoretically largest possible uncertainty, it is true that the overall uncertainty in a
calculation can never be smaller than the uncertainty associated with the least certain step in
the chain. For this reason, it is useful to disaggregate the contributions from the different
groups of input variables, using the toggles to isolate the effects.

Exhibit 8 shows the contributions of the variables in each of five input groups in a table of
statistics similar to those for logjo ILCR in Exhibit 3. In other words, Exhibit 8, a novel
type of probabilistic sensitivity analysis, tabulates the distributions of logjo ILCR that result
from random realizations of each of the five input groups while keeping the other four
constant. Again, this table has little or no intuitive appeal, although it does demonstrate that
the conservative point estimate combines assumptions that exceed the 95th percentile for the
variables in the exposure group and exceed the 90th percentile for the CPF. To visualize the
results of this probabilistic sensitivity analysis in graphs, we present several different views of
the same information in Exhibits 9-13, each with lines to locate the conservative point
estimate and EPA’s target risk range for comparison.

Exhibits 9 and 10 parallel earlier exhibits but also show the contributions from each group of
variables. In each exhibit, the top histogram shows the distribution with all the toggles
activated as a frame of reference. The second panel shows the risk distribution with only the
toggles in the exposure group activated. The remaining panels in Exhibits 9 and 10 show the
contributions from the variables in the remaining groups, as labeled. Exhibit 11 condenses the
cumulative distributions from the previous exhibit. Exhibits 12 and 13 show the box-and-
whiskers plots and the probability plots for each contributing group of input variables.

In different ways, Exhibits 9-13 portray the same information, and each allows us to
understand the contributions of each of the groups of input variables in different ways. In
declining order, the greatest variabilities and uncertainties flow from the CPF variable, the
variables in exposure group, and the concentration variable. We see support for this assertion
in the relative widths of the histograms in Exhibit 9, the relative steepness of the cumulative
distribution in Exhibits 10 and 11, the relative widths of the boxes and the whiskers in
Exhibit 12, and the relative slopes of the probability plots in Exhibit 13. Interestingly, these
same graphs show that EPA makes its most conservative policy assumptions to compensate
for the uncertainty of the variables with the greatest contributions.

DISCUSSION

We promote the use of spreadsheets and Monte Carlo software in practical applications, even
though some simple situations (e.g., the multiplication of many variables distributed
lognormally) can be calculated or well approximated by closed-form expressions (Shlaykhter,
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1991, citing Broadbent, 1956, and Fenton, 1960) for two reasons. First, most practical risk
assessments, such as those for hazardous waste sites, are far more complicated than can be
addressed analytically. Second, few risk assessors have the mathematical skill to manipulate
the closed-form methods (see Springer, 1979). -

New software used in conjunction with spreadsheets on powerful desktop computers provides
an easy and fast way to estimate probability distributions for human health risks in the
assessments of sites with chemical contamination. While the methods are straightforward and
can easily be extended to linked spreadsheets and correlated input variables (Decisioneering,
1991), continued research is needed to specify input distributions for exposure-related variables
and new methods are needed to quantify the distnbutions appropriate for CPFs.

In this simplified case study, we note that the point estimate 1s truly conservative because
calculating the point estimate compounds many conservative assumptions and values. When
the distribution of ILCR is presented as a histogram with the point estimate demarked, the
distribution is barely visible in linear space. For this reason, we recommend that risk
assessors also present the estimated distributions with point estimates demarked in logarithmic
space in a way that reveals the order of magnitude of the results.

Although we have chosen a simplified case study to illustrate the calculation and presentation
of distributions of exposure and risk, commercial software can be applied to far more general
cases, including: multiple compounds, multiple exposed populations. multiple exposure
pathways, and multiply correlated exposure variables (through the technique of Iman and
Conover (1982) and Iman and Davenport (1982)). With the combination of Excel™ and
Crystal Ball™, an analyst can design and perform a probabilistic risk assessment using any set
of algebraic. equilibrium, or steady state models 1n linked spreadsheets. As a general
proposition, any situation that can be modeled in Excel™, a full-featured spreadsheet. can then
be simulated in Crystal Ball™ by specifying either common distributions from built-in
“Gallery” (e.g., uniform, triangular, normal, lognormal, exponential, weibull, gamma, beta,
poisson, binomial, geometric, and hypergeometric) or a custom distribution (using (x,y) pairs
to specify the breakpoints of a piecewise linear CDF). By combining the features of the
spreadsheet and the simulation software, an analyst can also model mixture problems and can
denive new distributions, e.g., the distribution of a function, say, f(X) = X2-3. where X is
distributed lognormally.

RECOMMENDATIONS

Reviewing the various ways to present the overall distribution for [LCR. we recommend a
combination of the ordinary histogram and the cumulative histogram as shown in Exhibit 5
(sec similar recommendation in Ibrekk and Morgan, 1987), perhaps in combination with a
‘box-and-whiskers plot to the same scale along the lower edge of the ordinary histogram. We
find some highly technical audiences prefer the graph in Exhibit 7. We also recommend that
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analysts include a vanety of toggles in each model to isolate the contribution from each of
several groups of stochastic variables. To display these results, we recommend the graphs in
Exhibits 9 and l_O (or 11), perhaps supplemented with Exhibit 13.

We urge EPA (o endorse and encourage the use of Monte Carlo simulations as a way to
supplement and eventually replace current methods. We believe Monte Carlo analysis
separates risk assessment from risk management in the sense originally recommended by the
National Academy of Sciences (1983). Monte Carlo techniques provide a method to estimate
the distribution of risk and to understand the degree of conservatism present in a point
estimate.

LIMITATIONS

While we believe the strengths of the Monte Carlo methods far outweigh any limitations, this
case study rests on many assumptions which simplify the calculations but which also limit
the results. While it is not possible to list all the simplifications, it is important to discuss
some of the main types and to give illustrations.

- First, this case study uses greatly simplified equations to estimate exposure to chemicals.
Although the equations follow current federal guidance for public health risk assessments.
they are dramatic simplifications of reality. A risk distribution based on a model is only
as good as the model. In this simplified case study, for example, we use only one model
for dermal exposures and we assign the CPF for ingestion exposures to dermal exposures.
Each of these two assumptions is the source of additional uncertainty quite outside the
model and the results. The analyst must acknowledge exogenous sources of uncertainty
(not included in the model) and discuss their potential for shifting and/or increasing the
variance of the estimated risk distribution.

«  Second, this case study ignores obvious correlations among variables. As an example,
body weight and skin area are certainly correlated, and the joint distribution of these
variables 1s undoubtedly a function of age and sex .

«  Third, even 1n the Monte Carlo simulations, the case study treats many variables known
to be stochastic as deterministic. While it is relatively easy to overcome the third class of
oversimplification and limitation within current knowledge and computational resources,
more research is needed to address and resolve the limitations imposed by the first two
classes of simplifying assumptions.

- Funally, although 1t may seem obvious, inadvertent or deliberate abuse of the Monte
Carlo approach can occur and does lead to unrealistic and incorrect results. With a
powerful new tool available for use, we must all strive to use it wisely and appropriately,
especially in regard to the specification of input distributions and functional relationships.
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EXHIBITS
EXHIBIT 1.
Equation to Model Dermal Exposure to Soils
Cs - PEF - DpW « WpY + YpL
ADD(hfe) = . DinY ~.YinL
where:
ADD(itte) = Average Daily (bioavailable) Dose,
averaged over a hfetime (mg/(kg+d)).
Cs R soil exposure concentration (mg/kg).
PEF = personat exposure factor,
averaged over a day of exposure (kg/(kg-d)).
DpW = exposure days per week (dwk),
WpY = exposure weeks per year (wk/yr},
YpL = exposure years per lifetime -(yr/hfei.
oiny = total number of days per year [:I (dMwk) » 52 (wksyr)). and
YinL = total number of years per lifeime (70 yr/lite)
Equation to Estimate Incremental Lifetime Cancer Risk
ILCR = ADD(life) - CPF
where:
ILCR = Incremental Lifeime Cancer Risk, the incremental probability

that a person wili develop cancer during ifetime (probability)

ADD(Ife) = Average Daily Oose of a compound. averaged over Iife during
which exposure occurs, (mg/(kg+d))

CPF = Cancer Potency Factor for a compound, by ingeston
((mg/(kg-d))1)



Journal of Exposure Analysis and Environmental Epidemiology, Vol. I, No. 4, 1991

EXHIBIT 2.

Varnables

ecves

Exposure Scenano:

average body weight

time soil stays on skin
average body surface area
fraction of skin area exposed
skin soil loading

exposure days per week
exposure weeks per year
exposure years per life

Soil Properties
soil bulk density, Rho(b)
soil porosity, Phi
sail water content, Theta
organic carbon fraction, foc
Skin Properties
skin thickness, Delta(skin)
skin fat content, f(fat)
skin water content, Gamma
boundary layer size, Delta(a)
Chemical Properues
benzo(a)pyrene Kow
benzo(a)pyrene Kh
D(arr)
D(water)
Soit Concentrations’
benzo(a)pyrene
Retative BioAvaiability

benzo(a)pyrene

Cancer Potency Factor

benzo{a)pyrene (kg-d)/mg

Units

kg
hr

m2
frac
mg/em2
diwk
wisyr
yr/ ite

kg/m3

m3/m3

m3/m3
frac

kg/kg
m3/m3

frac
frac
m2/s
m2/s

mg/kg

frac

Point Distributton  Parameters

Esumate

47  Normal

8 Normal

14 Normal

0.2 Lognormatl

1 Unitorm

v Uniform

20 Uniform

10 Uniform

1600  Normal
05
a3
002
1 5E-05
01

03 Normal
0 0045
1 55€+06
2.04E-05
SE-06
SE-10

29 49 Lognormal

03

115 Lognormal

(9
o)
(n,0)
(m,s)
(a.b}
(a.b)
(a,b)
{a.b)

010)

(10)

(m,s)

(m.s)

Spreadsheet for Dermal Contact (One-Time Deposition)

Parameter Values

first

47

14

-2.15

075
05

1600

03

281

-079

second

83

017

050

125
15
25
12

005

068

239

501
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EXHIBIT 2.

(cont’d)

Toggle Reference

(0.3)

(=3« ool oo N N

Team, 1891 (GCA, 1984)
Team, 1991
Team, 1991 (GCA, 1984)
Team, 1991 (GCA, 1984)
Team, 1991
Team, 1991
Team, 1991
Team, 1991

Team, 1991

McKone, 1990
McKone, 1990
McKone, 1990

McKone,1990
McKone, 1990
Team, 1991

McKone, 1990

Mabey, 1982
Mabey. 1982
McKone, 1990
McKone, 1990

Team, 1991

US EPA, 1989, |

US EPA, 1986, SPHEM,
Crouch, 1990

Variables

General:

skin area exposed

soil air content, Alpha
solil total density, Rho(t}
D(G)

D(L)

soil deposition

soll dep

del{soll)

Dermal Contact

RG(soll)

Ri(sal)

D(soil), DG/RG + DURL
D(skin)

K(vapor loss from skin)
Kd

Uptake fraction

Ku or Kelf(s!-sk)

c

b

PEF (d)

PEF (lde)

ADD(iite)

BaP dermal contact ILCR
BaP dermal contact ILCR

Spreadsheet for Dermal Contact (One-Time Deposition)

Units Results
m2 028
m3/m3 02
kg/m3 1900 2
m2/s 9 41E-08
m/s 3.63E-11
mg 2800
Kg 00028
m 5 26E-06
1176409
23,808 30
m2/s 1 61E-15
m2/s 6 48E-16
9 52E-13
14,880 00
019
3 78E-11
003
003
kg/(kg=d) 1 11E-05
kg/(kg-d) 8 72E-08
mg/(kg=d) 2.57E-06
prob 2 96E-05
log10 -4 53
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EXHIBIT 3. Summary Statistics with All Toggles On

Tnals

Mean

Median

Mode

Standard Deviation
Variance
Skewness
Kurtosis

Range Width
Minimum
Maximum

Mean Standard Error

Percentile
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

In
Linear
Space

5,000
1.78E-06
1.84E-07
1.00E-07
5.52E-06
3.05E-11

562

40 26
3 35E-03
4 88E-13
3 35E-03

0

4 88E-13
5.89E-07
1 18E-06
1 77E-06
2 35E-06
2.94E-06
3 53E-06
4 12E-06
4 71E-06
5 30E-06
5 89E-06
6 48E-06
7 06E-06
7 65E-06
8 24E-06
8 83E-06
9 24E-06
1 O0E-05
1 06E-05
1 14E-05
3 35E-03

in
Log 10
Space

5,000
-6.80
-6.81
-6.84

1.13
128
003
2.85
984
-12.31
-2.47
0.02

-12 31
-870
-8 27
-8 00
-779
-7 58
-7 40
-725
-7 09
-6.95
-6 81
-6.67
-6 53
-6 37
-6 21
-6 04
-5 83
-5 61
-535
-4 96
-2.47

503
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]

EXHIBIT 4. Comparison of Frequency Distributions on Linear and
Logarithmic Scales

Cell T36 Frequency Distribution 4941 Trials

54 2,688

41
= -
= 3
— fa
2 27 ®
0 >
o h (@]
— «=
Q14 672

00 -~ — — ~ T

0.00e+p 1.50e-5 3.00e-5 4.50¢-5 6.00e-5
prob

Cell T37 Frequency Qistribution 4990 Tnals

01 i 65

L

.01 49
2 n
= r ®
E 0
2 01 1 2 ¢
S a
— =
Q- 00 16

00 — 0
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EXHIBIT 5. Comparison of Frequency Distribution and Cumulative
Distribution on Logarithmic Scale
Cell T37 Frequency istributionr 43930 Tnals
.01 65
> .01 a9
- =
= 2
2 o1 32 ¢
g 2
= 2
Q- o0 16
OO ~ - i 0
-10.00 -6. -2 00
1og10 prob
Forecast: BaP dermal fontact ILER ¢um
Cell T38 Cumulative Qistribution 4990 Tnals
1.00 4,990
L
75 r
Z 7
= 2
2 50 I @
L ] =
8 O
o 25 — ©
!
00 - L o
-10.00 -8.00 -6 4 90 -200
lod10
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EXHIBIT 6. Box and Whiskers Diagram with All Toggles On

all | _

| |

-15 -10 -5 0
Log10 of ILCR

EXHIBIT 7. Probability Plot of ILCR with All Toggles On

Expected Value

3 L _t’
-5 1 1
-15 -10 -5

Log10 of ILCR
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EXHIBIT 8. Summary Statistics for Different Contributing Factors in
Logarithm Space

All Exposure Soil Skin Conc Toxicity

Toggles Toggles Toggles Toggles Toggles Toggles

On On On On On On

Tnals 5,000 5,000 5.000 5.000 5.000 5,000

Mean -6.80 515 -4 53 -4 54 -4 78 -594

Median -6.81 -5.14 -4.53 -4 53 -4 78 -593

Mode -6.84 -5.19 -4 52 -4 52 -4 76 -588

Standard Deviation 1.13 0.36 0.02 008 030 104

Variance 1.28 013 0.00 001 009 107

Skewness 0.03 -0.19 -0.14 075 -0.01 -0 01

Kurtosis 2.85 295 3.03 4 30 302 296

Range Width 9.84 257 0.12 o 2.22 7 81

Minimum -12.31 -6 49 -4 60 -503 -5 85 -9 55

Maximum -2.47 -3.92 -4.48 -4 31 -363 -175

MSE 0.02 0.01 0.00 000 000 001
Percentile

0 -12.31 -6.49 -4.60 -503 -585 -9 55

5 -8.70 -5.74 -4 56 -4 68 -526 -7 64

10 -8.27 -5.60 -4 55 -4 64 -516 -7 27

15 -8.00 -5.52 -4 55 -4 62 -508 -7 01

20 -7.79 -5.45 -4.54 -4 60 -503 -6 81

25 -7.58 -539 -4 54 -4 58 -4 98 -6 64

30 -7 40 -533 -4 54 -4 57 . -4 93 -6 48

35 -7.25 -5.28 -4 54 -4 56 -4 89 -6 34

40 -7 09 -523 -4 53 -4 55 -4 85 -6 20

45 -6.95 -5 18 -4 53 -4 54 -4 82 -6 07

50 -6.81 -514 -4 53 -4 53 -4 78 -5a3

55 -6.67 -5.09 -4.53 -4 52 -474 -5 80

60 -6.53 -504 -4 52 -4 51 -4 70 -567

65 -6.37 -4 99 -4 52 -4 50 -4 66 -554

70 -6.21 -4 94 -4 52 -4 49 -4 62 -5 39

75 -6.04 -4.89 -4 52 -4 48 -4 58 -523

80 -583 -4 84 -4,52 -4 47 -4 53 -506

85 -561 -478 -4 51 -4 46 -4 47 -4 86

90 -5.35 -4.69 -4 51 -4 44 -4 40 -4 61

95 -4 96 -4 58 -4 50 -4 42 -4 29 -4 23

100 -2 47 -392 -4 48 -4 31 -3 63 -175
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EXHIBIT 9. EXHIBIT 10.
Contributions to Overall Uncertainty Contributions to Overall Uncertainty
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EXHIBIT 11. Cumulative Distributions for ILCR

Cumuiative Distributions

100
- 75
-—
8 50
L0
Q
-
a- 25

00 4
-10 00 -8.00 -6 ﬁo -4 00 200

EXHIBIT 12. Box and Whiskers Diagram Showing Components

I T

-1'-

all

1
1
N E— l w—
expos [ +ml
soil I~ — .

skin [~ 7]
conc [~ 5 .
CPF - i i .

L . ,
-15 -10 -5 0

Log10 of ILCR
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EXHIBIT 13. Probability Plot of ILCR Showing Components

5 : -
3 L I ]
f
©
=} 1
= B I
> i
2 i
Q )
© !
q’ t
T 1 L |
N |
B |
-3 L f’ ‘ ‘ : ..J :! _:
all  CPF “cont " |Boll
expos sknT
-5 ! | .
-15 -10 -5 ‘ 0

Log10 of ILCR
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Monte Carlo Techniques for Quantitative Uncertainty
Analysis in Public Health Risk Assessments

Kimberly M. Thompson,'? David E. Burmaster,' and Edmund A.C. Crouch®

Recetved October 16, 1990; revised August 1, 1991

Most public health risk assessments assume and combine a series of average, conservative, and
worst-case values to derive a conservative point estimate of risk. This procedure has major limi-
tations. This paper demonstrates a new methodology for extended uncertainty analyses in public
health risk assessments using Monte Carlo techniques. The extended method begins as do some
conventional methods—with the preparation of a spreadsheet to estimate exposure and risk. This
method, however, continues by modeling key inputs as random variables described by probability
density functions (PDFs). Overall, the technique provides a quantitative way to estimate the prob-
ability distributions for exposure and health risks within the validity of the model used. As an
example, this paper presents a simplified case study for children playing in soils contaminated
with benzene and benzo(a)pyrene (BaP).

KEY WORDS: Risk assessment; Monte Carlo simulation; uncertainty analysis.

1. INTRODUCTION

Following guidance published by the U.S. Envi-
ronmental Protection Agency (EPA), most public health
risk assessments assume and combine a series of aver-
age, conservative, and worst-case values to derive a point
estimate of risk that is presumed to be conservative and
protective of public health.*:? The Interim Final Human
Health Evaluation Manual,'® the most recent guidance
- document from the EPA headquarters, states:

. . . Each intake variable in the equation has a range of values.
For Superfund exposure assessments, intake vanable values
for a given pathway should be selected so that the combination
of all intake variables results in an estimate of the reasonable
maximum exposure for that pathway. As defined previously,
the rcasonable maximum exposure (RME) 1s the maximum ex-
posure that is reasonably expected to occur at a site. Under this
approach, some ntake variables may not be at their individual

! Alceon Corporation, P.O. Box 2669, Cambridge, Massachusetts 02238.

2 Present address: Harvard School of Public Health, 665 Huntington
Avenue, Bldg. I Room G13B, Boston, Massachusetts 02115.

3 Cambnidge Environmental, 58 Charles Street, Cambridge, Massa-
chusetts 02141.
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maximum values but when in combination with other variables
will result in estimates of RME. . _ . (p. 619, emphasis in the
onginal)

Unfortunately, the Agency offers no further defi-
nition—either qualitative or quantitative—for the key
concept of reasonable maximum exposure. The guidance
does not address the amount of conservatism which should
be used in risk assessment.

The current risk assessment procedures have three
major limitations. First, by selecting a combination of
moderate, conservative, and worst-case assumptions, risk
assessors and risk managers have no way of knowing
the degree of conservatism in an assessment. Since cur-
rent risk assessments generally lack sufficient uncer-
tainty analysis, risk managers and the public may have
a difficulat time putting the point estimates into some
kind of perspective. Second, by setting the bias high
enough to swamp the uncertainty for each of many var-
iables—but not necessarily all the variables—risk as-
sessments may consider scenarios that will rarely (if ever)
happen. Third, it is fundamentally meaningless to run

0272-4332/92/0300-0053306 50/1 © 1992 Society for Risk Analysis
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the site, Acme cleared the site and removed the visually
stained surface soils. However, in further talks with the
aity last year, Acme agreed in principle to sell the prop-
erty for inclusion in the park. Depending on the outcome
of a site risk assessment for the surface soils on the site,
Acme retains the right to limit the use of the site to
activities with little or no soil contact (e.g., a parking
lot with concession stands, or a swimming pool with
large concrete pavilions).

Stnce our purpose is to illustrate the use of Monte
Carlo simulation, we consider only one of the many
scenarios which could be considered for this site. The
scenario considers children who would play in the park
extenston contemplated for the old Acme/Baker prop-
erty. We assume that the children (from ages 8-18 years)
will spend 3 hr per day playing at the park on the site
and that they visit the park 1 day per week, 20 weeks
per year for 10 years. We make the conservative and
simplifying assumption that the children contact the soil
enough with their hands and lower arms to have a rate
of soil deposition on their skin of ~1 mg/cm? per day,
and to ingest ~50 mg of soil from the site per day. Given
the uncertainties inherent in an exposure assessment, this
scenario is constructed in accordance with current EPA
guidelines and using conservative (or health-protective)
assumptions, in the spirit of analyzing the RME case,
not the absolutely worst case.

3. EXPOSURE MODELS

To estimate health effects for compounds with car-
cinogenic potential, we first estimate the average daily
dose that a person receives in units of milligram of bioa-
vailable chemical per kilogram of body weight per day
(mg/(kg-d)), averaged over a 7Q-year life [abbreviated
as the ADD(life)]. The scenario requires two exposure
models: (i) incidental ingestion of soil and (ii) dermal
contact with soil.

Table [ shows the 27 variables and constants in the
two exposure models and the two Cancer Potency Fac-
tors (CPFs). The first two columns of the table show the
name, symbol, and units of the variable or constant. The
third column indicates whether the parameter applies to
the dermal contact model, the soil ingestion model, or
both. The fourth column gives the point estimates for
the inputs, and the fifth column shows the parameterized
distribution we used for those inputs we chose to vary.
The sixth column specifies the sources of each of the
point estimates and distributions, and the seventh col-
umn gives the location of the point estimate in the dis-
tribution. All of the point values are reasonable in the

sense that the EPA has or could readily endorse the vai-
ues for a particular site. Table II shows the exposure
models {used to estimate the ADD(life) values] and the
risk equations.

3.1. Ingestion of Soil

In this simplified case, we consider exposures from
the incidental and inadvertent ingestion of contaminated
soil (i.e., we include only children who do not exhibit
pica). Equation (1) in Table II shows the exposure model
used to estimate the ADD(life) for inadvertent ingestion
of contaminated soil.

3.2. Dermal Contact with Soil

Risk assessments often evaluate exposures from
dermal contact with contaminated soils. In 1990, McKone
published 2 new model which estimates the uptake of
chemicals from a soil matrix deposited onto the skin
surface.® In this model, the stratum corneum is the main
barrier to uptake, and the amount of chemical which
passes through the stratum corneum represents the bioa-
vailable dose. The model depends on scenario specific
inputs, soil properties, skin properties, and chemical
properties of the soil contaminants. Although both con-
tinuous and one-time deposition versions of the model
are available, we use the one-time or unit-deposition
model in this simplified analysis.

The unit-deposition model derives a Personal Ex-
posure Factor (PEF) which, when multiplied by the con-
centration of the chemical in the soil, estimates the average
daily dose on a day of exposure. Equation (2) in Table
IT shows the exposure model used to estimate the
ADD(life) for dermal contact with contaminated soil.
This PEF is averaged over a day of exposure and is a
function of 17 variables as shown in Egs. (3)-(5) in
Table II. (Note that Egs. (3)-(5) are only given to show
how the different variables are used in the model. For
details about the model, see Ref. 9.) .

Since this model requires 17 inputs (and creating
or finding 17 different parameterized distributions is an
arduous task), we performed a standard sensitivity analy-
sis to identify the most sensitive inputs. By varying each
input variable + 10% from its nominal value while hold-
ing all the other inputs constant, we found those varia-
bles which have the greatest effect on the output when
changed. If distributions for all 17 of the input variables
had been available, then we would have performed a
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Table i{. Exposurc Model and Risk Equations®

Soil ingestion model used to find the ADD(life)?:
ADD (life) =

Cs SlingR - RBA - DpW - WpY - YpL 10-* kg/mg
BW DinY - YinL

(1)

Dermal contact with soil model used to find the ADD(life)*:

Cs - PEF - DpW WpY - YpL

ADD(life) = DY - YL 2)
where:

SL - BF - SA - 0.01 K,
PEF = BW ((Ku + Kv)) (l exP( ‘)
3600 (p, + 10006 + ¢ — 0) (K, + K.) T))

SL - 0.01
0.000005 - K

K, = . )

8, (4.8 X 10 p, [ Kou + © + K, (& — O))

1 8qkm ff‘\l Kow

K“ leltr 7(‘,3)
SL - 0.01 - &? (4.8x10-4p, f.. Kow+ O +K, ($—0)) s
(0 +1000 - 6+6-0) (6-08) "D, K, + D)

Equation used to find the ILCR®:
ILCR = ADD(life) - CPF (6)

“Sec Table [ for key to symbols.

*Average daily dose of a compound, averaged over life during which
exposure occurs, in units of mg/(kg-d).

Incremental lifetime cancer nisk, the additional probability that a per-
son will develop cancer during lifeume in which exposure occurs
(dimensionless probability).

4. POINT ESTIMATES AND PARAMETERIZED
DISTRIBUTIONS

In this paper, we use three well-known distributions
to describe the key model inputs: the normal or Gaussian
distribution, the lognormal distribution, and the uniform
distribution. We denote random variable X with a normal
distribution as X ~ Normal (i, o), where p and o rep-
resent the arithmetic mean and standard deviation, re-
spectively. Similarly, the lognormal distribution is denoted
as X ~ Lognormal (m, s), where m and s represent the
arithmetic mean and standard deviation of the underlying
normal distribution, respectively. (The underlying nor-
mal distribution is generated by taking the logarithms of
the values in the distribution.) Finally, we use the no-
tation X ~ Uniform (x,, x,) to show that the random

- variable X is distributed uniformly between fixed mini-
mum (x,) and maximum (x,) values.

4.1. Chemical Concentrations in the Soils

For this hypothetical site, we synthesize a data set
consistent with the site history. We estimate the expo-
sure point concentration for each chemical in the soils
as the 95th percentile of the arithmetic mean of the soil
data (i.e., 3.39 mg/kg for benzene and 29.49 mg/kg for
BaP). Next, following the Monte Carlo framework, we
fit lognormal distributions to the synthetic data for each
chemical to estimate PDFs for the exposure point con-
centrations (where Cs represents the concentration of the
chemical in the soils on the site in mg/kg): CSpenzene ~
Lognormal (0.84, 0.77) and Csg,p ~ Lognormal (2.81,
0.68).

4.2, Cancer Potency Factors

Because of the assumptions made and the meth-
odology used in their derivation, CPF values estimated
from human or animal data are inherently uncertain val-
ues. Incorporating uncertainties into risk assessments re-
quires careful consideration of where such uncertainties
arise, methods of characterizing those uncertainties, and
the results of such methodologies (e.g., the sizes of the
uncertainties) in particular cases. There are many poten-
tial sources of uncertainty, including the experimental
results, the epidemiological model and doses, the inter-
species extrapolation, and the route extrapolation. Ex-
tending the ideas in earlier publications,**-!” one author
(EC) evaluated the EPA CPFs for benzene and BaP, and
estimated the degree to which the EPA values are overly
conservative (biased) and uncertain. Based on this in-
formation, we parameterize the CPFs for benzene and
BaP, for use in quantitative uncertainty analyses, as log-
normal distributions conditional on certain modeling as-
sumptions. We assume that extrapolation between animals
and humans is unbiased if_performed on the basis of
body weight. We divide the EPA point estimate by the
amount of bias (the factor by which the EPA value over-
estimates the median) to obtain the median of the dis-
tribution. To be consistent with our notation, we find
the natural logarithm of this value to describe the distri-
bution. Similarly, we use the natural logarithm of the
uncertainty associated with the EPA *‘standard’’ value
as the standard deviation. The CPFs for benzene and
BaP have these distributions (each in units of (mg/
(kg-d))-'): CPFyenzene ~ Lognormal (—4.33, 0.67) and
CPFg.p ~ Lognormal (—0.79, 2.39).

We choose the published EPA ingestion CPFs as
the point estimates of the CPFs for benzene and BaP,
2.9E-02 and 11.5 (mg/(kg-d))~*, respectively.*®-29 These
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Fig. 1. Frequency and cumulative distributions for ILCR from ingestion of soils contaminated with benzene.

expected, these output distributions have long right tails,
high variance, and average values much lower than the
point estimates. The locations of the point estimates using
all of the exposure variables shift to the 78th percentile
for the ingestion of benzene in soil case and they shift
to the 94th percentile for the dermal contact with BaP
case.

The CPFs for benzene and BaP with the distribu-
tions given earlier are group IV random variables. Fig-

ures le and 2e show the distributions for the five measures
of risk. As expected, we see dramatic shifts in the dis-
tributions toward values lower than the point estimates.
For each of the two pathways, the point estimates fall
at the 88th percentile for benzene and the 91st percentile
for BaP. These simulations demonstrate the amount of
conservatism built into the CPFs.

Finally, Figs. 1f and 2f show the distributions using
groups 1, II, I, and IV random variables in the simu-
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Table 1II. Summary Staustics for Distributions Shown in Figures 1 and 2

Stochasuc variable groups: 1 1] 1 LILI v LILULIV
Benzene soil ingestion [LCR (a) (b) (c) (d) (e) ®
Statistics:

Point estimate location 50% 69% 72% 78% 88% %
Mean 8.51E-10 7.61E-10 7.17E-10 6.64dE—10 4.65E—10 3.74E-10
Median (exact) 8.21E-10 S5.65E—-10 S.16E—10 3.58E—10 3.67E-10 1.61E-10
Mode S.1SE-10 3.54E-11 3.34E-11 6.22E—-12 220E-11 1.25E-12

Percentile:
0% S.15E-10 3.54E-11 3.34E-11 6.22E—12 2.20E-11 1.25E-12
5% 6.39E-10 1.63E-10 1.42E-10 S5.45E—-11 1.22E-10 1.91E-11
10% 6.69E—10 2.11E-10 1.86E~-10 8.15E—-11 1.58E-10 3.05E-11
15% 6.95E-10 2.S55E-10 2.23E-10 1.09E—10 1.84E~10 4.21E-11
20% : 714E-10 298E-10 2.61E-10 137E-10 2.10E-10 S5.46E-11
25% 7.33E-10 3.39E-10 3.00E-10 1.66E-10 2.35E-10 6.78E-11
30% 7.51E-10 3.78E-10 338E-10 195E-10 2.S8E-10 8.21E-11
35% 7.68E—10 4.25E-10 3.80E-10 2.29E-10 2.85E-10 9.91E-11
40% 7.86E~10 4.70E-10 4.21E-10 2.65E—-10 3.11E-10 1.18E-10
45% 8.03E—10 S5.14E-10 4.68E-10 3.07E-10 3.39E—-10 1.39E-10
50% 8.21E-10 5.65E-10 S5.16E-10 3.S8E—10 3.67E-10 1.61E-10
55% 8.39E-10 6.21E~10 S5.70E-10 4.13E-10 4.01E-10 1.87E-10
60% 8.60E-10 6.84E-10 6.32E-10 4.77TE-10 4.38E-10 2.24E-10
65% 8.82E-10 7.53E-10 6.98E—10 S.49E-10 4.79E-10 2.65E-10
70% 9.08E—10 8.41E-10 7.84E-10 6.46E—10 5.29E-10 3.16E-10

5% 9.3dE-10 951E-10 893E-10 749E-10 S.82E-10 3.80E-10

80% 9.69E-10 1.08E-9 1.02E-9 8.98E-10 6.49E—-10 4.76E-10

85% 1.01E-9 1.25E~-9 1.20E-9 1.12E-9 7.35E~10 6.14dE-10

90% 1.06E-9 1.52E-9 1.47E-9 1.47E-9 8.80E-10 8.59E-10

95% 1.16E-9 2.03E-9 1.97E-9 2.21E-9 1.13E-9 1.38E-9

100% 3.04E-9 1.10E-8 8.47E-9 1.95E-8 5.14E-9 2.29E-8

BaP dermal contact ILCR (a) (b) (c) ) (c) f
Statistics:

Point estimate location 51% 80% 94% 94% 91% 97%
Mean 3.06E-5 2.12E-5 1.50E-5 1.9E-5 2.10E-S 7.72E~6
Median (exact) 2.94E-5 1.68E-35 1.30E-5 T2E-6 1.18E-6 2.87E-7
Mode (exact) 7.94E-6 1.25E~-6 1.55E~-6 1.99E-7 844E-11 1.13E-11

Percentile:
0% 7.94E—-6 1.25E-6 1.55E-6 1.90E-7 8.44E-11 1.13E-11
5% 1.80E~5 S.48E—-6  S5.48E-6 1.61E-6 2.37E-8 4.30E-9
- 10% 2.03E-5 6.95E-6 5.57TE-6 2.24E-6 S.73E-8 1.06E-8

15% 2.18E-5 8.28E-6 7.60E~6 2.82E-6 1.04E~7 2.01E-8

20% 2.32E-5 9.42E-6 8.38E-6 3.36E-6 1.64E-7 3.14E-8

25% 2.43E-5 1.06E -5 9.17E-6 390E-6 243E-7 4.89E-8

30% 2.54E-5 1.17E-5 9.91E-6 4.48E~6 3.46E-7 7.19E-8

35% 2.64E-5 1.30E-5 1.07E-5 S.0dE-6 4.78E-7 1.04E-7

40% 2.74E-5 141E-5 1.14E-5 S.I0E-6 6.51E-7 1.43E-17

45% 2.84E-5 1.54E-5 1.22E-5 6.40E-6 B8.82E-7 2.05E-7

50% 2.94E -5 1.68E-5 1.30E-5 7.2E-6 1.18E-6 2.87E~-7

55% 3.05E-5 1.83E-5 1.39E-5 8.08E—-6 1.59E-6 3.85E-7

60% 3.16E-5 2.00E-5 1.49E-5 9.07E-6 2.21E-6 5.33E-7

65% 3.28E~5 2.18E-5 1.60E-5 1.02E-5 3.02E-6 7.61E-7

70% 3.40E-5 2.40E-5 1.72E-5 1.17E-5 4.13E—-6 1.08E-6

5% 3.55E-5 2.66E-5 1.85E-5 1.35E-5 6.02E-6 1.59E-6

80% 3.71E-5 2.96E-5 2.03E-5 1.56E-5 8.81E-6 2.49E-6

85% 3.93E-5 3.37E-5 2.24E-5 1.84E-5 139E-5 3.90E-6

90% 4.22E-5 3.97E-5 2.56E~5 231E-5 2.50E-5 7.50E-6

95% 4.70E-5 5.16E-5 3.11E-5 3.20E-5 S98E-5 1.88E~-S

100% 1.22E-4 2.44E-4 1.04E-4 2.50E—4 1.60E-2 1.19E-2

61
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Parametric Distributions for Soil Ingestion by Children

Kimberly M. Thompson!? and David E. Burmaster!
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This note presents parameterized distributions of estimates of the amount of soil ingested by
children based on data collected by Binder er al. (1986). Following discussions with Dr. Binder,
we modified the Binder study data by using the actual stool weights instead of the 15 g value used
in the onginal study. After testing the data for lognormahity, we generated parameternized distri-
butions for use in risk assessment uncertainty analyses such as Monte Carlo simulations.

KEY WORDS: Soil ingestion rates; nisk asscssment; Monte Carlo simulation, parametric distributions, un-

certainty analysis.

1. INTRODUCTION

For use in nsk assessments, several papers present
empirical data and point estimates of the amount of soil
ingested by children. In 1987, LaGoy!" presented an
authoritative review of the studies to date and estimated
soi] ingestion based on age. Although most of the other
papers present tables of summary statistics and/or his-
tograms that show large variabilities in the results, none
of the papers present enough information for full quan-
titative uncertainty analysis. To date, no one has pre-
sented parameterized distributions which would be useful
in Monte Carlo simulations. Using Monte Carlo tech-
niques to estimate both point vatues and the full distri-
butions of the public health risks for a situation make
the analyses more informative to risk managers and
members of the public because they show where the
point estimate falls within the distnibution as well as
showing the full distributions of risk.(? However, per-
forming Monte Carlo simulations requires parameterized
distributions of each of the key input variables.

Binder et al. performed a ‘“diaper study’” in 1986,

one of the first empirical studies on soil ingestion by chil-

dren.® In the study, the children had an average stool
weight of 7.5 g/day, which was half of what previous

! Alceon Corporation, P.O. Box 2669, Cambndge, Massachusetts 02238.
% Current address: Harvard School of Public Health, 665 Hunungton
Ave., Bidg I Rm G13B; Boston, Massachusetts 02115.
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investigators had measured in other studies.®** Conse-
quently, the authors did not use the actual stool weights
of the children in estimating sotl ingestion, but instead used
15 g/day as the stool weight for every subject, effectively
doubling their estimates of soil ingestion.

In September and October of 1986, Calabrese et
al.® performed another “‘diaper study’’ using 8 trace
elements (Al, Ba, Mn, Si, Ti, V, Y, and Zr) and a mass-
balance approach to account for trace elements ingested
in foods and medicines. The authors of that study con-
cluded that not considering ingestion of trace elements
in food (particularly Ti and Y) elevates estimates of soil
ingestion by factors of between 2 and 6 depending on
the trace element. Their findings are consistent with pre-
vious studies by Binder er al.® and Clausing er al.®® 1f
the previous studies are corrected for trace elements in-
gested in food and medicine. They note that adjusting
the fecal weights in the Binder er al.®® study ““in retro-
spect based on [their] data was not justified.”” In a sep-
arate publication, Stanek ez al.") reported the trace element
content of the foods and medicines in the Calabrese study;
however, these data were not reported in such a way that
distributions could be generated.

2. METHODS

To fit a parametric distribution to data for soil
ingestion by children, we contacted Dr. Binder of the

0272-4332/91/0600-0339506 50/1 © 1991 Socicry for Risk Analysis
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the distribution and its underlying normal (where the
underlying normal is found by taking the natural loga-
nthms of the data). For the data, the median and standard
deviation are the two parameters generally used to de-

o oy X

scribe the distribution (although we also show the arith-
metic mean). For the underlying normal (the natural
logarithms of the data), the mean and the standard de-
viation are shown. As discussed in standard text
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Abstract

When random variables are used to represent variability, the risk equation has
mathematical properties poorly understood by many risk assessors. Variability
represents the heterogeneity in a well-characterized population, usually not
reducible through further measurement or study. We follow the lead of most
mathematicians in using random variables to represent and analyze variability.
To illustrate the issues, we use LogNormai distributions to model variability.

1.0 Intr ion

When estimating the incremental lifetime cancer risk, R, from an environmental
exposure to a single carcinogenic chemical via a single exposure pathway, risk +
assessors often use equations of this fundamental form:

I x

3 Eqn 1

H|=1 Y J

where [] indicates a product over the index. In common practice, risk assessors
use point values (i.e., real numbers) for each variable in Egn 1. Burmaster and
Thompson (1995a, b) have discussed the origins and interpretation of Eqn 1 in
deterministic risk assessments.

Most risk assessors now agree that all the variables in Egn 1 contain both

(i) variability and/or (ii) uncertainty. In this discussion, variability represents the
heterogeneity in a well-characterized population [and is usually not reducible
through further measurement or study] while uncertainty represents our -

7 September 1995 1 © Alceon



Human and Ecological Risk Assessment

ignorance about a poorly-characterized phenomenon or models [and may be
reducible through further measurement or study]. Thus, variability is a property of
the natural system under analyst, while uncertainty is a property of the analyst.
Here, we focus exclusively on variability -- not because uncertainty is
unimportant, but because the introduction of variability alone illustrates the main
mathematical points of this discussion.

In the probabilistic paradigm, Eqn 1 remains the fundamental equation of risk
assessment (Burmaster & Thompson, 1995a, b). However, in the fully
probabilistic framework, each of the variables in Egn 1 is a positive random
variable represented by a probability density function (PDF) or a cumulative
distribution function (CDF) (see, e.g., Feller, 1968 & 1971). To emphasize this
change in perspective, we re-write Eqn 1 as Eqn 2, with doubly underscored
symbols to denote that each variable is now a random variable that expresses
variability in a quantity. We also create Eqns 3 and 4, each an alternative and
equivalent representation of Eqn 2:

R = —H:=‘ £, Egn 2
— HJ X
=1 =]
R = (X, Yj) fori=1,..,landj=1, .., J Eqn 3
Xj :
R = %((z';— fori=1,..,landj=1,..,J Eqn 4

In Eqn 4, we use the notation g(X;) for the product of random variables in the
numerator and the notation h(Y;) for the product of random variables in the
denominator so we can refer to the numerator and denominator separately as
needed. We will continue to denote real variables (point values) without the
double underscores. With knowledge of the distributions of all the Xj and Yj, an
analyst can calculate a closed form expression for the distribution R in a handful
of special cases with independent variables (Springer, 1979). In most practical
cases, including those cases with correlated or jointly distributed random

variables on the right hand side of the risk equation, the analyst can simulate a
numerical approximation to the distribution R (Rubenstein, 1981; Morgan, 1984).
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2.0 Background on Two-Parameter LogNormal Distributions

LogNormal distributions with two constant parameters play a central role in
expressing variability in human and ecological risk assessment for at least three
reasons. First, many physical, chemical, biological, and statistical processes tend
to create random variables that follow two-parameter LogNormal distributions for
expressing variability (Hattis & Burmaster, 1994). For exampie, the physical
mixing and dilution of one material (say, a miscible or soluble contaminant) into
another material (say, surface water in a bay) tends to create non equilibrium
concentrations which are LogNormal in character (Ott, 1990; Ott, 1995). Second,
when the conditions of the Central Limit Theorem hold, the mathematical process
of multiplying a series of random variables will produce a new random variable
(the product) which, in the limit, is LogNormal in character, regardless of the
distributions from which the input variables arise (Benjamin & Cornell, 1970).
Finally, two-parameter LogNormal distributions are self-replicating under
multiplication and division, i.e., products and quotients of such LogNormal
random variables are themselves distributed lognormally (Aitchison & Brown,
1957, Crow & Shimizu, 1988). All these points apply to Eqns 2, 3, and 4.

The two-parameter LogNormal distribution expressing variability takes its name
from the fundamental property that the logarithm of the random variable is
distributed according to a Normal or Gaussian distribution (Evans et al, 1993):

In[X] ~ N(u, o) Eqn 5

where In[] denotes the natural or Napierian logarithm function (base e) and

N(-, *) denotes a Normal or Gaussian distribution with two constant parameters,
the mean p and the standard deviation o (with 6 > 0). In Eqn 5, Xiis a two-

parameter LogNormal random variable, and In[X] is @ Normal random variable. In
Eqn 5, uis the mean and o is the standard deviation of the distribution for the
Normal random variable In[X], not the LogNormal random variable X. Many
people say that Eqn 1 represents the LogNormal random variable X"in
logarithmic space." As can be seen in Eqn 5, the random variable In[X] is
distributed normally, but the random variable X is distributed lognormally.
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The information coded in Egn 5 is identical to the information coded in Egn 6:

1<
H

exp[ N(u, o) ] Eqn 6

where exp[+] denotes the exponential function and N(s, +) again denotes the same

Normal or Gaussian distribution with the same two constant parameters, mean p
and standard deviation o (with o > 0) as above. In Eqn 6, X is a two-parameter

LogNormal random variable. As earlier, p is the mean and ¢ is the standard
deviation of the Normal random variable In{X], not the LogNormal random

variable X. Many people say that Eqn 6 represents the LogNormal random
variable X "in linear space.” When working with Eqn 6 as the representation for a
LogNormal random variable X, many people refer to N(u, o) as the "underlying
Normal distribution” or "the Normal distribution in logarithmic space" as a way to
remember its origins.

3.0 The Fundamental Risk Equation With All LogNormal Random Variables
3.1 The General Case

If all the inputs to the fundamental risk equation, Eqn 2, are independent
LogNormal random variables of the form:

X ~ exp[ N(w;, oi) ] fori=1,..,1 Eqn7
Y; ~ exp[ N(yj, oj) ] forj=1,...,J Eqn 8

then the distribution of risk is also a LogNormal random variable of the form:

R~ exp[N(up, or)] Eqn 9
with
HR = Wi~ XH Ean 10
OR = Sart [ ¥ 02 + 2. 6] Eqn 11

7 September 1995 4 © Alceon



Human and Ecological Risk Assessment

with the sums over all the indicated indices. As discussed earlier, LogNormal
distributions are self-replicating under multiplication and division.

3.2  Working with "High-End" and "Low-End" Values

In 1992, the US Environmental Protection Agency (US EPA) defined the concept
of a "high-end" point value for a variable in the numerator of EqQn 2 as a
deterministic input to an exposure assessment that falls above the 90th percentile
but below the 99.9t" percentile of the distribution for the particular random
variable (US EPA, 1992). For a variable in the denominator of Eqn 2, one may
define a corresponding "low-end" value as falling below the 10th percentile but
not below the 0.1th percentile for the particular random variable.

For simplicity of exposition, let us take the 95t percentile as representing a high-

end value and the 5" percentile as representing a low-end value of a distribution.
Let the notations {T}o.95 and {T}0.05 and indicate the 95t and 5th percentiles,

respectively, of an arbitrary random variable T.

With this notation, when the standard deviations are roughly similar, the high-end
value of the numerator of Eqn 4 is considerably smaller than the function of the
high-end inputs:

{9Xid}ogs < a({Xi}o.95) fori=1,..,1 Eqn 12

Similarly, when the standard deviations are roughly similar, the low-end value of
the denominator of Eqn 4 is considerably larger than the function of the low-end
inputs:

{h(¥jloos > h({Yj}0.05) forj=1,..,J "Eaqn 13
Overall, this means that the high-end value for risk is much, much smaller than

the function of the high-end inputs in the numerator and the low-end inputs in the
denominator when the standard deviations are roughly similar:
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{R}o.95 << f({X}o.95 {Yjlo.05) Eqn 14

fori=1,...,landj=1,...,J -

Most risk assessors now understand this well-documented property of the
fundamental risk equation, Eqn 2 (Burmaster & Harris, 1993; Bogen, 1994,
Cullen, 1994). This property of the fundamental risk equation does not depend on
the use of LogNormal distributions as inputs.

3.2  Working with Arithmetic Means

Let the notation <T> indicate the arithmetic mean (or expected value) of an
arbitrary random variable T. For a LogNormal distribution, the arithmetic mean is
always greater than the median of the distribution by the factor exp[ 0.5 * 627]. In
many practical cases, the arithmetic mean of a LogNormal random variable falls
between the 65th and the 80th percentiles of the distribution. However, in certain
situations, the arithmetic mean of a LogNormal distribution can exceed the 95th
percentile of that distribution.

Some mathematical properties hold in this situation. For independent LogNormal
distributions, the arithmetic average of the numerator in Eqn 4 equals the function
of the arithmetic averages of the input variables:

<g9(Xj)> = g(<Xi>) fori=1,..,1 Eqn 15

Similarly, for independent LogNormal distributions, the arithmetic average of the
denominator in Eqn 4 equals the function of the arithmetic averages of the input
variables:

<h(Yj)> = h(<Yj>) forj=1,...,J Eqn 16

The results in Eqns 15 and 16 are easy to prove for independent LogNormal
distributions, and the results hold generally for other independent random
variables from other families of distributions. Some authors use this property as
the definition of independence between two random variables.
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However, for independent LogNormal distributions, the arithmetic average of risk
does not equal the function of the averages of the inputs:

<BR> # f(<X>, <Yj>) Eqn 17
fori=1,..,landj=1,..J
This result in Eqn 17 surprises many people, even though it is easily proved for
independent LogNormal distributions. It is true for other families of distributions

as well.

3.3  Working with Medians

Let the notation {T}o.50 indicate the median or 50th percentile of an arbitrary
random variable T.

Some mathematical properties hold in this situation. For LogNormal distributions,
the median of the numerator in Eqn 4 equals the function of the medians of the
input variables:

{gXloso = a({Xi}o.50) fori=1,..,1 Eqn 18

and, the median of the denominator in Eqn 4 equals the function of the medians
of the input variables:

{h¥jhoso = h({Yj}o.50) forj=1,...J Eqn 19

More generally for independent LogNormal distributions, the median risk equals
the function of the median inputs to Eqn 3:

{B}o.50 = f({Xi}o.50, {¥jl0.50) Eqn 20
fori=1,..,landj=1,..,J

Thus, for independent LogNormal distributions, the median of the function for risk
(in Eqns 2, 3, and 4) is the function of the median inputs. Although this result is
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not true for independent random variables from other families of distributions, we
have found it an excellent approximation in many numerical simulations of Eqns
2,3, and 4.

3.4  Working with Mixed Cases

If we continue to restrict ourselves to independent LogNormal random variables
as the inputs to the fundamental risk equation, any of Eqns 2, 3, or 4, then:

+ the median of the R is equal to the function of the medians of the inputs;

+ the arithmetic mean of R is NOT equal to the function of the arithmetic
means of the inputs; and

« the 95th percentile of R is much smaller than the function of (i) the 95t

percentiles of all the inputs in the numerator and (ii) the 5th percentiles of
all the inputs in the denominator.

Thus, as is exactly true for independent LogNormal distributions and as is
approximately true for other independent random variables with longer tails to the
right, medians (not averages) are "neutral" and "self replicating” when used as
point value inputs to the fundamental risk equation, Eqn 2.

Without doing a full calculation or a full simulation, no one can know the
percentile of R calculated if the inputs to the fundamental risk equation, Eqn 2,
include a combination of median values, average values, and high- and low-end
values.

Restricting ourselves to the case with independent LogNormal distributions, we
see that:

* the use of one or more median values in either the numerator or the

denominator does not shift the estimate of R (further) above or (further)
below the correct median of R, i.e., median inputs are "neutral" in trying to

understand where the value R falls as a percentile of the distribution R,
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+ the use of one or more average values in the numerator does shift the
estimate of R above the correct median of R, i.e., average inputs in the
numerator introduce moderate to large (but unknown) amounts of

conservatism in trying to understand where the value R falls as a
percentile of the distribution R;

« the use of one or more high-end values in the numerator does shift the
estimate of R far above the correct median'of__F=i, i.e., high-end inputs in the
numerator introduce large (but unknown) amounts of conservatism in

trying to understand where the value R falls as a percentile of the
distribution R; and

» the use of one or more low-end values in the denominator does shift the
estimate of R far above the correct median of R, i.e., low-end inputs in the
denominator also introduce large (but unknown) amounts of conservatism

in trying to understand where the value R falls as a percentile of the
distribution R.

Most risk assessors now understand that the introduction of a few high-end
values into the numerator or a few low-end values into the denominator of Eqns 1
or 2 can introduce very large amounts of conservatism into the point estimate R
(Harris & Burmaster, 1992; Burmaster & Harris, 1993; Bogen, 1994; Cullen,
1994).

Fewer people understand that the introduction of several average values in the
numerator of Eqns 1 or 2 can introduce significant amounts -- or even very large
amounts -- of conservatism into point estimate R. As an extreme example, if the
arithmetic means of three distributions all exceed the 90th percentile of the
corresponding distribution, the result is obvious. Less obvious, the use of three
average values as point values for the corresponding LogNormal random
variables can really be the multiplication of three 75t percentiles. If these are the
only conservative inputs in an equation, these three inputs may multiply to give,
in effect, a high-end point value for risk. If these three average values for inputs
in the numerator are combined multiplicatively with three high-end values for
other inputs in the numerator, the resulting point estimate of risk may be far, far
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more conservative than understood just from the combination of the three high-
end values along with medians for the other variables.

4.0 Conclusions
From this discussion, we draw three main conclusions.

First, without doing a full calculation or a full simulation, no one can know the
percentile of R calculated if the inputs to the fundamental risk equation, Eqn 2,

include a combination of median values, average values, and "high end" values.

Second, for independent LogNormal random variables -- and for other
independent random variables from other families of distributions with long tails
to the right -- the use of one or more medians in the numerator or denominator of
Eqgns 2, 3, or 4 for input variables does not introduce any compounding
conservatisms; in contrast, the use of one or more average values in the
numerator of those same equations always introduces multiplicative
conservatisms, usually hidden from view and sometimes numerically large.

Third, the simultaneous use of several average values in the numerator (for
distributions with long tails to the right) along with several high-end values in the
numerator and several low-end values in the denominator can lead to point
estimates of risk that fall above the range US EPA uses to set policy.
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Abstract

In a probabilistic exposure assessment, an analyst must often develop a probability
distribution to represent a random variable that has a fixed minimum and a fixed
maximum. This manuscript shows how to fit a two-parameter Beta distribution to a
sample data set, and then shows how to fit a constrained four-parameter Beta4
distribution to the same data -- thereby improving the fit and speeding the simulation by

a factor of 5.

1.0 Introduction

In a probabilistic exposure assessment, an analyst must often develop a probability
distribution to represent a random variable that has a fixed minimum and a fixed
maximum. For example, a child may play in a park from 0 to 7 day/week. Similarly, the
fraction of skin in contact with soils may range from 0 to 1, while the fraction of a nutrient

or a toxicant absorbed in the gut may range from 0 to 1.

Beta distributions (of the first kind) (Mood et al, 1974; Evans et al, 1993) have several
useful properties that an analyst may exploit in a probabilistic exposure assessment.
First, a two-parameter Beta distribution can assume a wide variety of shapes,
depending on the values taken by the two parameters. Second, a two-parameter Beta

variate has a fixed minimum (zero) and a fixed maximum (one). Third, a two-parameter

27 May 1996 1 © 1996 Alceon


mailto:deb@Alceon.com

submitted to Risk Analysis

The random variable X has this probability density function (PDF):

xa'1 ° (1 - x)b'1

B(a, b)

fx(x) - Eqn 2

where the denominator is the beta function, (a, b) = F ua-1 (1-u)b-1 du (Abramowitz
0

& Stegun, 1964). The first two central moments of this distribution are, respectively, its

expected value and its variance:

a
a+b

E[X] = Eqn3
aeb

@+b)2@a+b+1) Ean 4

VIX] =

While the Beta distribution is extremely flexible over the support [ 0, 1 ] and finds many
uses in statistics, two of its special properties are key in exposure assessment. First,
when a > 1 and b > 1, the distribution has one mode:

a-1
a+b-2 Ean 5

Mode[ X ] =
Second, Beta variates are much easier and faster to simulate than when a and b are
integers. [EndNote 2]. Further, the speed of the algorithm commonly used to simulate a

Beta variate with integer parameters decreases as the sum (a + b) increases (Evans et

al, 1993).

Exploratory Data Analysis: After exploratory data analysis to visualize the pattems in the
data (Tukey, 1977, Chambers et al, 1983; Cleveland, 1985), we decided to fit a two-

parameter Beta distribution to the data.
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and these central moments:

E[Y] = c*E[X]) Eqn 9
VIY] = c2eV[X] . ’ Eqn 10

Again, for a > 1 and b > 1, the Beta4 distribution has one mode:

Mode[Y]= ce*Mode[ X]+d Egn 11

Finally, whenc =1 -dand 0 <d < 1, the random variate Y has support [d, 1].

Exploratory Data Analysis: After further exploratory data analysis, we decided to fit a

Beta4 distribution with a and b constrained to integers for speed in simulation.

Application: First, we fit the Beta4 distribution to the data by maximizing the loglikelihood
function (Edwards, 1992) in Mathematica™ subject to the constraints: a=4, b =1, and
c=1-d. In Figure 2, a solid line depicts the CDF for this fitted Beta4 distribution, Y1 ~
Betad4[y | a =4, b =1, é =0.397303, d = 0.602697 ], plotted against the empirical
CDF for the data. The maximum of the loglikelihood function for Y1 is 20.24, indicating
that this constrained four-parameter Beta4 distribution fits the data better than the best
two-parameter Beta distribution. For comparison, the dashed line in Figure 2 depicts the

CDF for Xo.

5.0 Discussion

Figure 3 shows the excellent correspondence between the best-fit two-parameter Beta

distribution and the best-fit constrained four-parameter Beta4 distribution as a QQ-plot
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In a probabilistic exposure assessment, an analyst must often develop a probability
distribution to represent a randbm variable that has a fixed minimum and a fixed
maximum. This manuscript shows how to fit a two-parameter Beta distribution to a
sample data set, and then shows how to fit a constrained four-parameter Beta4
distribution to the same data -- thereby improving the fit and speeding the simulation by

a factor of 5.
1.0 Introduction

In a probabilistic exposure assessment, an analyst must often develop a probability
distribution to represent a random variable that has a fixed minimum and a fixed
maximum. For example, a child may play in a park from O to 7 day/week. Similarly, the
fraction of skin in contact with soils may range from 0 to 1, while the fraction of a nutrient

or a toxicant absorbed in the gut may range from O to 1.

Beta distributions (of the first kind) (Mood et al, 1974; Evans et al, 1993) have several
useful properties that an analyst may exploit in a probabilistic exposure assessment.
First, a two-parameter Beta distribution can assume a wide variety of shapes,
depending on the values taken by the two parameters. Second, a two-parameter Beta

variate has a fixed minimum (zero) and a fixed maximum (one). Third, a two-parameter
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The random variable X has this probability density function (PDF):

xa-1 . (1 - x)b-1

B(a, b)

fx(x) Egqn2

where the denominator is the beta function, B(a, b) = r ua-! (1-u)p-1 du (Abramowitz
0

& Stegun, 1964). The first two central moments of this distribution are, respectively, its

expected value and its variance:

a

a*b £
(@+b2(@a+b+1) an 4

V[X] =

While the Beta distribution is extremely flexible over the support [ 0, 1 ] and finds many
uses in statistics, two of its special properties are key in exposure assessment. First,

-

when a > 1 and b > 1, the distribution has one mode:

_a-1
a+b-2 Ean 5

Mode[ X ]1=
Second, Beta variates are much easier and faster to simulate than when a and b are
integers. [EndNote 2]. Further, the speed of the algorithm commonly used to simulate a

Beta variate with integer parameters decreases as the sum (a + b) increases (Evans et

al, 1993).

Exploratory Data Analysis: After exploratory data analysis to visualize the pattemns in the
data (Tukey, 1977; Chambers et al, 1983; Cleveland, 1985), we decided to fit a two-

parameter Beta distribution to the data.
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and these central moments:

E[Y] = ceE[ X] Eqn 9
ViY] = c2eV[X] : Egn 10

Again, for a > 1 and b > 1, the Beta4 distribution has one mode:

Mode[Y ]= ce*Mode[ X])+d Egn 11

Finally, whenc=1-dand 0 <d < 1, the random variate Y has support [d, 1].

Exploratory Data Analysis: After further exploratory data analysis, we decided to fit a

Beta4 distribution with a and b constrained to integers for speed in simulation.

Application: First, we fit the Beta4 distribution to the data by maximizing the loglikelihood
function (Edwards, 1992) in Mathematica™ subject to the constraints: a=4, b =1, and
¢ =1 - d. In Figure 2, a solid line depicts the CDF for this fitted Beta4 distribution, Y1 ~
Betad[y | a =4, b =1, & =0.397303, d = 0.602697 ], plotted against the empirical
CDF for the data. The maximum of the loglikelihood function for Y4 is 20.24, indicating
that this constrained four-parameter Beta4 distribution fits the data better than the best
two-parameter Beta distribution. For comparison, the dashed line in Figure 2 depicts the

CDF for Xo.

5.0 Discussion

Figure 3 shows the excellent correspondence between the best-fit two-parameter Beta

distribution and the best-fit constrained four-parameter Beta4 distribution as a QQ-plot
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Using Beta Distributions Efficiently in A Probabilistic Exposure Assessment

David E. Burmaster
Aiceon Corporation
PO Box 382669, Cambridge, MA 02238-2669
tel: 617-864-4300; fax: 617-864-9954
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Abstract

In a probabilistic exposure assessment, an analyst must often develop a probability
distribution to represent a random variable that has a fixed minimum and a fixed
maximum. This manuscript shows how to fit a two-parameter Beta distribution to a
sample data set, and then shows how to fit a constrained four-parameter Beta4
distribution to the same data -- thereby improving the fit and speeding the simulation by

a factor of 5.
1.0 Introduction

In a probabilistic exposure assessment, an analyst must often develop a probability
distribution to represent a random variable that has a fixed minimum and a fixed
maximum. For example, a child may play in a park from 0 to 7 day/week. Similarly, the
fraction of skin in contact with soils may range from 0 to 1, while the fraction of a nutrient

or a toxicant absorbed in the gut may range from 0 to 1.

Beta distributions (of the first kind) (Mood et al, 1974; Evans et al, 1993) have several
useful properties that an analyst may exploit in a probabilistic exposure assessment.
First, a two-parameter Beta distributic;n can assume a wide variety of shapes,
depending on the values taken by the two parameters. Second, a two-parameter Beta

variate has a fixed minimum (zero) and a fixed maximum (one). Third, a two-parameter
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Beta distribution can be scaled and translated, thereby creating the four-parameter
Beta4 distribution (of the first kind). Finally, the method of Maximum Likelihood (Mood et
al, 1974; Edwards, 1992) is a powerful way to fit either the two-parameter Beta

distribution or the four-parameter Beta4 distribution to measured data. [EndNote 1].

Overall, the two-parameter Beta distribution and the four-parameter Beta4 distribution
have many potential uses in probabilistic exposure assessments. This manuscript first
shows how to fit a two-parameter Beta distribution to a sample data set, and then it

shows how fit a four-parameter Beta4 distribution to the same data.
2.0 Data for the Sample Problem

To illustrate the techniques, we analyze some of the data reported in a recent
manuscript (Magee et al, 1996; Table 1) in which the authors compiled 13
measurements of the absorption of polycyclic aromatic hydrocarbons from food in the
guts of rats, hamsters, or humans. All the measurements fall between 0.7 and 1: 0.921,
0.89, 0.988, 0.887, 0.996, 0.967, 0.98, 0.87, 0.869, 0.94, 0.75, 0.97, and 0.938. In this
manuscript, we accept these values as bona fide measurements of a phenomenon

exhibiting considerable variability.
3.0 The Two-Parameter Beta Distribution
Theory: A Beta distribution (of the first kind) with two parameters, a >0 and b > 0,

describes the random variable X over the support 0 < x < 1: (Mood et al, 1974; Evans et

al, 1993): /

>
|

Beta[ x| a, b ] X xe[0,1] Egn 1

27 May 1996 2 © 1996 Alceon .



submitted to Risk Analysis

The random variable X has this probability density function (PDF):

_ xa-1 e (1 - x)b-1
fx(x) = e b) Eqn2

where the denominator is the beta function, B(a, b) = F ua-1 (1-u)b-1 du (Abramowitz
. 0

& Stegun, 1964). The first two central moments of this distribution are, respectively, its

expected value and its variance:

a
E[X] = a+b Eqn 3
aeb
VIXT= GEibz@+b+1) Ean 4

While the Beta distribution is extremely flexible over the support [ 0, 1 ] and finds many
uses in statistics, two of its special properties are key in exposure assessment. First,
when a> 1 and b > 1, the distribution has one mode:

_a-1
a+b-2 Eaqn 5

Mode[ X ] =
Second, Beta variates are much easier and faster to simulate than when a and b are
integers. [EndNote 2]. Further, the speed of the algorithm commonly used to simulate a
Beta variate with integer parameters decreases as the sum (a + b) increases (Evans et

al, 1993).

Exploratory Data Analysis: After exploratory data analysis to visualize the pattemns in the
data (Tukey, 1977; Chambers et al, 1983; Cleveland, 1985), we decided to fit a two-

parameter Beta distribution to the data.
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Application: We fit the Beta distribution to the data by maximizing the loglikelihood
function (Edwards, 1992) in Mathematica™ (Wolfram, 1991; Wickham-Jones, 1994). In
Figure 1, the solid line depicts the cumulative distribution function (CDF) for the best-fit
distribution with noninteger parameters: X1 ~ Beta[ x | 4 = 13.7035, b = 1.17996 ; and
the dashed line depicts the CDF for the best-fit distribution with small inteéer
parameters: Xo ~ Beta[ x | a = 14, b = 1 ]. The maxima of the loglikelihood functions for
distributions X1 and X> are 20.18 and 19.85, respectively. At this point, we have an

excellent fit with noninteger parameters and an adequate fit with integer parameters.
4.0 The Four-Parameter Beta Distribution
Theory: A Beta4 distribution (of the first kind) with four parameters, a>0,b>0,c >0,

and d > 0 describes the random variable Y over the support d <y < (c+d): (Mood et al,

1974, Evans et al, 1993)

<
2

Betad4[yla,b,c,d] ; ye [d,c+d] Eqn6

This distribution arises from and can be simulated as a scaled and translated two-

parameter Beta distribution:

=<
I

ceX+d X ye[d,c+d] Eqn7

The random variable Y has this PDF:

tly) = (= Eqn 8
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and these central moments:

E[Y] = ceE[ X] Eqn 9
VY] = c2eV[X] Eqn 10

Again, fora > 1 and b > 1, the Beta4 distribution has one mode:
Mode[Y]= ceMode[ X]+d Eqn 11
Finally, whenc =1 -dand 0 <d < 1, the random variate Y has support [d, 1].

Exploratory Data Analysis: After further exploratory data analysis, we decided to fit a

Beta4 distribution with a and b constrained to integers for speed in simulation.

Application: First, we fit the Beta4 distribution to the data by maximizing the loglikelihood
function (Edwards, 1992) in Mathematica™ subject to the constraints: a=4, b = 1, and
c=1-d. In Figure 2, a solid line depicts the CDF for this fitted Beta4 distribution, Y1 ~
Betad[y | & =4, b =1, ¢ =0.397303, d = 0.602697 ], plotted against the empirical
CDF for the data. The maximum of the loglikelihood function for Y1 is 20.24, indicating
that this constrained four-parameter Beta4 distribution fits the data better than the best
two-parameter Beta distribution. For comparison, the dashed line in Figure 2 depicts the

CDF for Xo.
5.0 Discussion

Figure 3 shows the excellent correspondence between the best-fit two-parameter Beta

distribution and the best-fit constrained four-parameter Beta4 distribution as a QQ-plot
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(Chambers et al, 1983) for 100 realizations from Y4 and X1. In this figure, the diagonal
line shows the locus of perfect match. In this application, it is inconsequential that X4
and Y1 diverge at the low extreme of the distribution (i.e., X1 will generate values
smaller than d = 0.602697 less than one percent of the time but Y will never generate a

value smaller than d).

While it is not surprising that an unconstrained four-parameter distribution can fit the
data better than a two-parameter distribution, it is pleasing to note that Y4 (constrained,
then optimized) fits the data better than X1 (unconstrained, optimized) as seen by
comparing the maxima of the loglikelihood functions. Not only does Y fit the data better
than X1, Mathematica™, for example, simulates Y1 some 5 times faster tﬁan it
simulates X4. Further, Y1 has integer values for parameters a and b, so many popular

Monte Carlo simulation programs that cannot simulate X1 can simulate Y1 .

EndNotes

1. The analyst can use the “profile likelihood method" (Edwards, 1992) to find joint confidence
regions for the parameters.

2. Most popular software packages accept only integer parameters.

A W n

Brian H. Magee, Stephanie M. Vaughn, and Andrew M. Wilson provided many helpful comments during

the preparation of this manuscript. Alceon Corporation funded this research.

Trade Marks

Mathematica™ is a registered trademark of Wolfram Research, Inc.

27 May 1996 6 © 1996 Alceon



Cumulative Probability

Cumulative Probability

0 0.2 0.4 0.6 08 1 1.2

Figure 1: CDFs for X1 (solid) and X2 (dashed)
plotted against the data
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Figure 2: CDFs for Y1 (solid) and X (dashed)
plotted against the data
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Figure 3: QQ-Plot for Y4 vs X1 (n = 100)
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